Ex. 1 If $f(x)=\left\{\begin{array}{l}x^{2}+2, x \geq 1 \\ 2 x+1, x<1\end{array}\right.$, then $\operatorname{Lim}_{x \rightarrow 1} f(x)$ equals -
(A) 1
(B) 2
(C) 3
(D) Does not exist

Sol. $\lim _{x \rightarrow 1-0} f(x) \lim _{h \rightarrow 0}=[2(1-h)+1]=3$
$\lim _{x \rightarrow 1+0} f(x)=\lim _{h \rightarrow 0}\left[(1+h)^{2}+2\right]=3$
\therefore LHL $=$ RHL, so $\lim _{x \rightarrow 1} f(x)=3$. Ans.[C]

Ex. $2 \lim _{x \rightarrow 0} \frac{1+e^{-1 / x}}{1-e^{-1 / x}}$ is equal to -
(A) 1
(B) -1
(C) 0
(D) Does not exist

Sol. $\quad L H L=\lim _{h \rightarrow 0} \frac{1+e^{1 / h}}{1-e^{1 / h}}$

$$
\begin{aligned}
&=\lim _{h \rightarrow 0}=\frac{e^{-1 / h}+1}{e^{-1 / h}-1}-1 \\
& \text { RHL }=\lim _{h \rightarrow 0}=\frac{1+e^{-1 / h}}{1-e^{-1 / h}}=\frac{1+0}{1-0}=1
\end{aligned}
$$

LHL \neq RHL, so given limit does not exist. Ans.[D]

Ex. $3 \lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x}{3 x^{2}+4}$ equals -
(A) $1 / 2$
(B) $2 / 3$
(C) $3 / 4$
(D) 0

Sol. $=\lim _{x \rightarrow \infty} \frac{2+(3 / x)}{3+\left(4 / x^{2}\right)}=\frac{2}{3}$
Ans.[B]

Ex. $4 \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$ equals -
(A) -1
(B) 0
(C) 1
(D) None of these

Sol. Limit $=\lim _{x \rightarrow \infty} x\left[\left(1+\frac{1}{x^{2}}\right)^{1 / 2}-1\right]$
$=\lim _{x \rightarrow \infty} x\left[1+\frac{1}{2 \mathrm{x}^{2}}-\frac{1}{8 \mathrm{x}^{4}}+\ldots-1\right]$
$=\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{1}{2 \mathrm{x}}-\frac{1}{8 \mathrm{x}^{3}}+\ldots\right]=0$.
Ans.[B]

Ex. $5 \lim _{x \rightarrow-1}\left(\frac{x^{2}-1}{x^{2}+3 x+2}\right)$ is equal to-
(A) -2
(B) $1 / 2$
(C) 0
(D) 1

Sol. Limit $=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{(x+2)(x+1)}=\frac{-1-1}{-1+2}=-2$
Ans.[A]

Ex. $6 \lim _{x \rightarrow a}\left[\frac{x^{2}-(a+1) x+a}{x^{3}-a^{3}}\right\rfloor$ is equal to -
(A) $\frac{a-1}{3 a^{2}}$
(B) $a-1$
(C) a
(D) 0

Sol. $\lim _{x \rightarrow a}\left[\frac{x^{2}-(a+1) x+a}{x^{3}-a^{3}}\right]\left(\frac{0}{0}\right.$ form $)$
$=\lim _{\mathrm{x} \rightarrow \mathrm{a}}=\frac{2 \mathrm{x}-\mathrm{a}-1}{3 \mathrm{x}^{2}}=\frac{\mathrm{a}-1}{3 \mathrm{a}^{2}}$
(D.L.Hospital rule)

Ans.[A]

Ex. $7 \lim _{x \rightarrow 3} \frac{x-3}{|x-3|}$, is equal to -
(A) 1
(B) -1
(C) 0
(D) Does not exist

Sol. \quad LHL $=\lim _{h \rightarrow 0} \frac{(3-h)-3}{|(3-h)-3|}$
$=\lim _{h \rightarrow 0} \frac{-h}{|-h|}=-1$
RHL $=\lim _{h \rightarrow 0} \frac{(3+h)-3}{|(3+h)-3|}$
$=\lim _{h \rightarrow 0} \frac{h}{|h|}=1$
LHL \neq RHL, so limit does not exist.Ans.[D]

Ex. 8 If $f(x)=\frac{x+|x|}{x}$, then $\lim _{x \rightarrow 0} f(x)$ equals-
(A) 2
(B) 0
(C) 1
(D) Does not exist

Sol. \quad LHL $=\lim _{h \rightarrow 0} \frac{-h+|h|}{-h}=\lim _{h \rightarrow 0}(0)=0$

$$
\text { RHL }=\lim _{h \rightarrow 0} \frac{h+|h|}{h}=2
$$

LHL \neq RHL \Rightarrow does not exist. Ans.[D]

Ex. $9 \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+x}-\sqrt{1-x}}$ is equal to -
(A) $1 / 2$
(B) 2
(C) 1
(D) 0

Sol. Limit $=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+x}+\sqrt{1-x})}{(1+x)-(1-x)}$
$=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}+\sqrt{1-x}}{2}=1$.
Ans.[C]

Ex. $10 \lim _{x \rightarrow 0} \frac{x^{x}-\log (1+x)}{x^{2}}$ equals -
(A) $1 / 2$
(B) 1
(C) $3 / 2$
(D) 2

Sol. $\lim _{x \rightarrow 0} \frac{x\left(1+x+\frac{x^{2}}{2!}+\ldots .\right)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots .\right)}{x^{2}}$

$$
=\lim _{x \rightarrow 0}\left(\frac{3}{2}+\frac{1}{6} x+\ldots\right)=3 / 2
$$

Ans.[C]

Ex. 11 The value of $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right]$ is -
(A) $-1 / 2$
(B) $1 / 2$
(C) $-1 / 3$
(D) $1 / 3$

Sol. Limit $=\lim _{x \rightarrow 0} \frac{\sin ^{2} x-x^{2}}{x^{2} \cdot \sin ^{2} x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}-x^{2}}{x^{2}\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}-\frac{1}{3} x^{4}+\ldots .-x^{2}}{x^{4}\left(1-\frac{x^{2}}{3!}+\ldots\right)^{2}}=-1 / 3 \text { Ans.[C] }
\end{aligned}
$$

Ex. $12 \lim _{x \rightarrow 0} \frac{\tan 2 x-x}{3 x-\sin x}$ equals-
(A) $2 / 3$
(B) $1 / 3$
(C) $1 / 2$
(D) 0

Sol. The given limit is in the form, therefore applying L 'Hospital's rule, we get
Limit $=\lim _{x \rightarrow 0} \frac{2 \sec ^{2} 2 x-1}{3-\cos x}=\frac{2-1}{3-1}=\frac{1}{2}$ Ans.[C]

Ex. $13 \lim _{x \rightarrow 0} \frac{\sin x+\log (1-x)}{x^{2}}$ is equal to -
(A) 0
(B) $1 / 2$
(C) $-1 / 2$
(D) Does not exist

Sol. It is in $0 / 0$ form, so using Hospital rule, we have

$$
\begin{array}{ll}
\text { Limit }=\lim _{x \rightarrow 0} \frac{\cos x-\frac{1}{1-x}}{2 x} & (0 / 0 \text { form }) \\
=\lim _{x \rightarrow 0} \frac{-\sin x-\frac{1}{(1-x)^{2}}}{2}=-1 / 2 & \text { Ans.[C }]
\end{array}
$$

Ex. $14 \lim _{x \rightarrow \infty} \frac{\sin x}{x}$ equals -
(A) 1
(B) 0
(C) ∞
(D) Does not exist

Sol. $\quad \lim _{x \rightarrow \infty} \frac{\sin x}{x}$
$=\lim _{x \rightarrow \infty}($ a finite number between -1 and 1$) / \infty$

$$
=0
$$

Ans.[B]
Ex. $15 \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$ is equal to -
(A) e^{3}
(B) $e^{1 / 3}$
(C) 1
1(D) e

Sol. Limit $=\lim _{x \rightarrow 0}\left(\frac{x+x^{3} / 3+\ldots}{x}\right)^{1 / x^{2}}$
$=\lim _{x \rightarrow 0}\left(1+\frac{x^{3}}{3}\right)^{1 / x^{2}}$
$[\because \mathrm{x} \rightarrow 0$, so neglecting higher powers of x$]$
$\left.=\lim _{x \rightarrow 0}\left[\left(1+\frac{x^{2}}{3}\right)^{3 / x^{2}}\right]^{1 / 3}\right]^{1 / 3}$
Ans.[B]

Ex. 16 If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ equals -
(A) 0
(B) ∞
(C) 1
(D) None of these

Sol. $\quad \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sqrt{\frac{\{1-(\sin x / x)\}}{\left\{1+\left(\cos ^{2} x / x\right)\right\}}}$
$=\sqrt{\frac{1-0}{1+0}}=1$.
Ans.[C]

Ex. 17 If $G(x)=-\sqrt{25-x^{2}}$, then $\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}$ equals -
(A) $1 / 24$
(B) $1 / 5$
(C) $-\sqrt{24}$
(D) None of these

Sol. Here $G(1)=-\sqrt{25-x^{2}}=-\sqrt{24}$
\therefore Given limit
$=\lim _{x \rightarrow 1} \frac{-\sqrt{25-x^{2}}+\sqrt{24}}{x-1} \quad\left(\frac{0}{0}\right.$ form $)$
$=\lim _{x \rightarrow 1} \frac{x}{\sqrt{25-x^{2}}} \quad$ (By L Hospital ruel)
$=\frac{1}{\sqrt{24}}$
Ex. 18 If $f(9)=9$ and $f^{\prime}(9)=4$, then $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to -
(A) 1
(B) 3
(C) 4
(D) 9

Sol. Given limit is in $0 / 0$ form, so using Hospital rule, we get
Limit $=\lim _{x \rightarrow 9} \frac{\frac{1}{2 \sqrt{f(x)}} \cdot f(x)}{\frac{1}{2 \sqrt{x}}}$
$=\frac{f(9) \cdot \sqrt{9}}{\sqrt{f(9)}}=\frac{4.3}{3}=4$
Ans.[C]

Ex. $19 \lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x+3}$ is equal to -
(A) 1
(B) e
(C) e^{2}
(D) e^{3}

Sol. Limit $=\lim _{x \rightarrow \infty}\left(\frac{x+2}{x+1}\right)^{x} \cdot\left(\frac{x+2}{x+1}\right)^{3}$.

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty}\left(\frac{1+2 / x}{1+1 / x}\right)^{x} \cdot\left(\frac{1+2 / x}{1+1 / x}\right)^{3} \\
& =\frac{\lim _{x \rightarrow \infty}\left[(1+2 / x)^{x / 2}\right]^{2}}{\lim _{x \rightarrow \infty}(1+1 / x)^{x}} \cdot \lim _{x \rightarrow \infty}\left(\frac{1+2 / x}{1+1 / x}\right)^{3} \\
& =\frac{e^{2}}{\mathrm{e}} \cdot 1=\mathrm{e}
\end{aligned}
$$

Ans.[B]

Ex. 20 The value of $\lim _{x \rightarrow \infty} \frac{x(\log x)^{3}}{1+x+x^{2}}$ is -
(A) 0
(B) 1
(C) -1
(4) $1 / 2$

Sol. $\lim _{x \rightarrow \infty} \frac{x(\log x)^{3}}{1+x+x^{2}} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{(\log x)^{3}+3(\log x)^{2}}{1+2 x} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{3(\log x)^{2} \cdot \frac{1}{x}+6(\log x) \cdot \frac{1}{x}}{2}$
$=. \lim _{x \rightarrow \infty} \frac{3(\log x)^{2}+6 \log x}{2 x} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty} \frac{6(\log x) \frac{1}{x}+\frac{6}{x}}{2}$
$=3 \lim _{x \rightarrow \infty} \frac{\log x+1}{x}$
$\left(\frac{\infty}{\infty}\right.$ form $)$
$=3 \lim _{x \rightarrow \infty} \frac{(1 / x)}{1}=0$.
Ans.[A]

Ex. $21 \lim _{x \rightarrow 0} \frac{\sin x^{0}}{x}$ is equal to -
(A) 1
(B) π
(C) x
(D) $\pi / 180$

Sol. \quad Limit $=\lim _{x \rightarrow 0} \frac{\sin (\pi / 180) x}{x}$
$=\lim _{x \rightarrow 0} \frac{(\pi / 180) \cos (\pi / 180) x}{1}$
$=\frac{\pi}{180}$
Ans.[D]

Ex. 22 If $f(x)=\left\{\begin{array}{l}x-1, x<0 \\ 1 / 4, x=0 \\ x^{2}, x>0\end{array}\right.$ then $\lim _{x \rightarrow 0} f(x)$ equals -
(A) 0
(B) 1
(C) -1
(D) Does not exist

Sol. Here $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0$
and $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x-1)=-1$
$\because \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)$
$\therefore \lim _{x \rightarrow 0} \mathrm{f}(\mathrm{x})$ does not exist.
Ans.[D]

Ex. $23 \lim _{x \rightarrow 0} \frac{2^{x}-1}{\sqrt{(1+\mathrm{x})}-1}$ equals -
(A) $\log 2$
(B) $2 \log 2$
(C) $1 / 2 \log 2$
(D) 2

Sol. Given Limit

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{2^{x}-1}{\sqrt{(1+x)}-1} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \\
& =\lim _{x \rightarrow 0} \frac{2^{x}-1}{x} \lim _{x \rightarrow 0}(\sqrt{1+x}+1) \\
& =2 . \lim _{x \rightarrow 0} \frac{2^{x} \log 2}{1}=2 \cdot \log 2
\end{aligned}
$$

Ans.[B]

Ex. 24 If a, b, c, d are positive real numbers, then $\lim _{n \rightarrow \infty}\left(1+\frac{1}{a+b n}\right)^{c+d n}$ is equal to -
(A) $e^{d / b}$
(B) $\mathrm{e}^{\mathrm{c} / \mathrm{a}}$
(C) $\mathrm{e}^{(\mathrm{c}+\mathrm{d}) /(\mathrm{a}+\mathrm{b})}$
(D) e

Sol. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{a+b n}\right)^{c+d n}$
(1^{∞} form)

$=e^{\lim _{x \rightarrow \infty}} \frac{c+d n}{a+b n}$
$=e^{\lim _{x \rightarrow \infty}} \frac{\frac{c}{n}+d}{a / n+b}=e^{d / b}$
Ans.[A]

Ex. $25 \lim _{x \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1} x\right)^{1 / x}$ equals -
(A) 0
(B) 1
(C) ∞
(D) -1

Sol. Let $y=\lim _{x \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1} \mathrm{x}\right)^{1 / x}$
$=\lim _{x \rightarrow \infty}\left(\cot ^{-1} x\right)^{1 / x}$
$\therefore \log \mathrm{y}=\lim _{\mathrm{x} \rightarrow \infty} \frac{\log \cot ^{-1} \mathrm{x}}{\mathrm{x}} \quad\left(\frac{\infty}{\infty}\right.$ form $)$
$=\lim _{x \rightarrow \infty}-\frac{1}{\left(1+x^{2}\right) \cos ^{-1} x} \quad \quad(0 x \infty$ form $)$
$=-\lim _{x \rightarrow \infty} \frac{\left(1+\mathrm{x}^{2}\right)^{-1}}{\cot ^{-1} \mathrm{x}} \quad\left(\frac{0}{0}\right.$ form $)$
$=-\lim _{x \rightarrow \infty} \frac{\frac{-2 x}{\left(1+x^{2}\right)^{2}}}{\frac{-1}{1+x^{2}}}=-2 \lim _{x \rightarrow \infty} \frac{x}{1+x^{2}}$
$=-2 \lim _{\mathrm{x} \rightarrow \infty} \frac{1}{2 \mathrm{x}}=0 \quad \therefore \mathrm{y}=\mathrm{e}^{0}=1$.Ans.[B]

Ex. $26 \lim _{x \rightarrow 0} \frac{x\left(2^{x}-1\right)}{1-\cos x}$ equals -
(1) 0
(2) $\log 2$
(3) $2 \log 2$
(4) None of these

Sol. The given limit $=\lim _{x \rightarrow 0} \frac{2^{x}-1}{x} \cdot \frac{x^{2}}{1-\cos x}$
$=\lim _{x \rightarrow 0} \frac{2^{x}-1}{x} \lim _{x \rightarrow 0} \frac{x^{2}}{2 \sin ^{2} \frac{x}{2}}$
$=\log x \cdot 2 \lim _{x \rightarrow 0}\left(\frac{x / 2}{\sin (x / 2)}\right)^{2}$
$=2 \log 2$.
Ans.[C]

Ex. 27 The value of $\lim _{x \rightarrow 0}\left[\frac{a}{x}-\cot \frac{x}{a}\right]$ is -
(A) 0
(B) 1
(C) a
(D) $a / 3$

Sol. Given Limit $=\lim _{x \rightarrow 0}\left[\frac{a}{x}-\frac{\cos (x / a)}{\sin (x / a)}\right\rfloor$
$=\lim _{x \rightarrow 0}\left[\frac{a \sin (x / a)-x \cos (x / a)}{x \sin (x / a)}\right]$
$=a \lim _{x \rightarrow 0}\left[\frac{a \sin (x / a)-x \cos (x / a)}{x^{2}}\right] \times \frac{(x / a)}{\sin (x / a)}$
$=a \lim _{x \rightarrow 0}\left[\frac{a \sin (x / a)-x \cos (x / a)}{x^{2}}\right]\left(\frac{0}{0}\right.$ form $)$
$=a \lim _{x \rightarrow 0}\left[\frac{\cos (x / a)-\cos (x / a)+(x / a) \sin (x / a)}{2 x}\right]$
$=0 \quad$ Ans.[A]

LEVEL-1

Question based on

Existence of limit

Q. 1 If $f(x)=\left\{\begin{array}{cl}4 x, & x<0 \\ 1, & x=0 \\ 3 x^{2}, & x>0\end{array}\right.$, then $\lim _{x \rightarrow 0} f(x)$ equals-
(A) 0
(B) 1
(C) 3
(D) Does not exist
Q. 2 If $f(x)=\left\{\begin{array}{cc}-1, & x<-1 \\ x^{3}, & -1 \leq x \leq 1 \\ 1-x, & 1<x<2 \\ 3-x^{2}, & x>2\end{array}\right.$ then-
(A) $f(x)=1$
(B) $\lim _{x \rightarrow 1^{+}} f(x)=1$
(C) $\lim _{x \rightarrow 2^{+}} f(x)=-1$
(D) $\lim _{x \rightarrow 2^{-}} f(x)=0$
Q. $3 \lim _{x \rightarrow \infty} \sin x$ equals-
(A) 1
(B) 0
(C) ∞
(D) Does not exist
Q. $4 \lim _{x \rightarrow 0} \sin \frac{1}{x}$ equals-
(A) 0
(B) 1
(C) ∞
(D) Does not exist
Q. $5 \lim _{x \rightarrow 0} x \sin \frac{1}{x}$ equals-
(A) 1
(B) 0
(C) ∞
(D) None of these
Q. 6 Let $f(x)=x(-1)^{[1 / x]}, x \neq 0$ where [] represent greatest integer function then $\lim _{x \rightarrow 0} f(x)$ is -
(A) 2
(B) 0
(C) -1
(D) Does not exist
Q. 7 Which of the following limits does not exist-
(A) $\lim _{x \rightarrow 0} \frac{|x|}{x}$
(B) $\lim _{x \rightarrow 0}\{x+|x|\}$
(C) $\lim _{x \rightarrow 0}|x|$
(D) $\lim _{x \rightarrow 0}\{x-|x|\}$
Q. 8 If $f(x)=\left\{\begin{array}{ll}x, & x<0 \\ 1, & x=0 \\ x^{2}, & x>0\end{array}\right.$ then, $\lim _{x \rightarrow 0} f(x)-$
(A) 0
(B) 1
(C) 2
(D) does not exist
Q. $9 \lim _{x \rightarrow 3 / 2} x-[x]$ equals -
(A) 0
(B) 1
(C) $1 / 2$
(D) $3 / 2$
Q. 10 Which of the following limits exists-
(A) $\lim _{x \rightarrow 0} x|x|$
(B) $\lim _{x \rightarrow 1 / 4}[x]$
(C) $\lim _{x \rightarrow 0} x \sin 1 / x$
(D) All the above
Q. $11 \lim _{x \rightarrow a} \frac{1}{(x-a)^{2 n-1}}(n \in N)$ equals-
(A) ∞
(B) $-\infty$
(C) 0
(D) Does not exist
Q. 12 If $f(x)=\left\{\begin{array}{cl}\frac{e^{1 / x}+e^{-1 / x}}{e^{1 / x}-e^{-1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then $\lim _{x \rightarrow 0} f(x)$ equals-
(A) 1
(B) 2
(C) 3
(D) Does not exist
Q. 13 If f is a odd function and $\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})$ exists then $\lim _{x \rightarrow 0} f(x)$ equals-
(A) 0
(B) 1
(C) -1
(D) None of these
Q. 14 If $[x]=$ greatest integer $\leq x$, then $\lim _{x \rightarrow 2}(-1)^{[x]}$ is equal to -
(A) 1
(B) -1
(C) ± 1
(D) None of these

Question

based on
$\mathbf{x} \rightarrow \infty$
Q. $15 \lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}^{2}+\mathrm{n}+1}{1+3+5+\ldots . .+(2 n-1)}$ equals-
(A) 1
(B) $4 / 3$
(C) $3 / 4$
(D) ∞
Q. 16 The value of $\lim _{x \rightarrow \infty} \frac{2 x^{3}-4 x+7}{3 x^{3}+5 x^{2}-4}$ is-
(A) $2 / 3$
(B) $-7 / 4$
(C) $-4 / 5$
(D) ∞
Q. 17 The value of $\lim _{n \rightarrow \infty} \frac{\sqrt{3 n^{2}-1}-\sqrt{2 n^{2}-1}}{4 n+3}$ is-
(A) $\frac{1}{4}(\sqrt{3}-\sqrt{2})$
(B) $\frac{1}{4}(\sqrt{3}+\sqrt{2})$
(C) $(\sqrt{3}-\sqrt{2})$
(D) None of these
Q. $18 \lim _{x \rightarrow \infty} \frac{(2 x-3)(3 x-4)}{(4 x-5)(5 x-6)}=$
(A) 0
(B) $1 / 10$
(C) $1 / 5$
(D) $3 / 10$
Q. $19 \lim _{x \rightarrow \infty} \frac{\sin 5 x}{x}$ equals-
(A) 5
(B) $1 / 5$
(C) 0
(D) 1
Q. 20 The value of $\lim _{n \rightarrow \infty} \frac{\frac{1}{2}+1+\frac{3}{2}+\ldots \frac{n}{2}}{25 n^{2}+n+3}$ is-
(A) 0
(B) $1 / 100$
(C) ∞
(D) None of these
Q. $21 \lim _{\mathrm{n} \rightarrow \infty} \frac{1+5+5^{2}+\ldots . .+5^{\mathrm{n}-1}}{1-25^{\mathrm{n}}}$ equals-
(A) 0
(B) -1
(C) 1
(D) ∞
Q. $22 \lim _{n \rightarrow \infty}\left(4^{n}+5^{n}\right)^{1 / n}$ equals-
(A) 4
(B) 5
(C) e
(D) None of these
Q. $23 \lim _{x \rightarrow \infty} \frac{x-\sin x}{x+\cos ^{2} x}$ equals-
(A) 0
(B) 1
(C) ∞
(D) None of these
Q. $24 \lim _{n \rightarrow \infty}\left[\frac{1}{1-n^{2}}+\frac{2}{1-n^{2}}+\ldots . .+\frac{n}{1-n^{2}}\right]$ is equal to-
(A) 1
(B) 2
(C) $-1 / 2$
(D) $1 / 2$
Q. $25 \lim _{x \rightarrow 0^{+}} \frac{\mathrm{xe}^{1 / x}}{1+\mathrm{e}^{1 / x}}$ equals-
(A) 0
(B) 1
(C) ∞
(D) None of these
Q. $26 \lim _{n \rightarrow \infty} \frac{(n+2)!+(n+3)!}{(n+4)!}$ equals-
(A) 0
(B) ∞
(C) 1
(D) None of these
Q. $27 \lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\frac{3}{n^{2}}+\ldots . .+\frac{n}{n^{2}}\right)$ equals-
(A) 0
(B) $1 / 2$
(C) 2 n
(D) 2^{n}
Q. 28 The value of $\lim _{n \rightarrow \infty}\left(\frac{1}{1-n^{4}}+\frac{8}{1-n^{4}}+\ldots . .+\frac{n^{3}}{1-n^{4}}\right)$ is -
(A) 1
(B) 0
(C) $-1 / 4$
(D) None of these
Q. $29 \lim _{n \rightarrow \infty}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots .+\frac{1}{3^{n}}\right)$ equals-
(A) $1 / 2$
(B) $1 / 3$
(C) 1
(D) 0

Question based on

Factorisation method

Q. 30 The value of $\lim _{x \rightarrow \pi / 2} \frac{1-\sin ^{3} x}{\cos ^{2} x}$ is-
(A) $-\frac{3}{2}$
(B) $\frac{3}{2}$
(C) 1
(D) 0
Q. 31 The value of $\lim _{x \rightarrow 3}\left(\frac{x^{4}-81}{x-3}\right)$ is -
(A) -27
(B) 108
(C) undefined
(D) None of these
Q. $32 \lim _{x \rightarrow 1} \frac{x-1}{2 x^{2}-7 x+5}$ equals-
(A) $1 / 3$
(B) $-1 / 3$
(C) $1 / 2$
(D) $-1 / 2$
Q. $33 \lim _{x \rightarrow 1} \frac{1-x^{-1 / 3}}{1-x^{-2 / 3}}$ equals-
(A) $1 / 3$
(B) $1 / 2$
(C) $2 / 3$
(D) $-2 / 3$

Question
based on

Rationalisation method

Q. $34 \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}$ equals-
(A) 1
(B) $1 / 2$
(C) 0
(D) Does not exist
Q. $35 \lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}$ equals-
(A) 0
(B) $3 / 2$
(C) $1 / 4$
(D) None of these
Q. $36 \lim _{x \rightarrow \infty}\left\lceil\sqrt{\left(a^{2} x^{2}+a x+1\right)}-\sqrt{\left(a^{2} x^{2}+1\right)}\right\rfloor$ equals-
(A) 1
(B) 2
(C) 0
(D) $1 / 2$
Q. $37 \lim _{x \rightarrow 0} \frac{\sin 4 x}{1-\sqrt{(1-x)}}$ equals-
(A) 4
(B) 8
(C) 10
(D) None of these
Q. $38 \lim _{x \rightarrow 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}$ equals-
(A) 0
(B) 1
(C) $1 / 3$
(D) $-1 / 3$
Q. 39 The value of $\lim _{x \rightarrow a} \frac{\sqrt{x-b}-\sqrt{a-b}}{x^{2}-a^{2}}(a>b)$ is -
(A) $\frac{1}{4 \mathrm{a}}$
(B) $\frac{1}{a \sqrt{a-b}}$
(C) $\frac{1}{2 a \sqrt{a-b}}$
(D) $\frac{1}{4 a \sqrt{a-b}}$
Q. 40 The value of $\lim _{x \rightarrow \infty} x^{3 / 2}\left(\sqrt{x^{3}+1}-\sqrt{x^{3}-1}\right)$ is-
(A) 1
(B) -1
(C) 0
(D) None of these
Q. $41 \lim _{x \rightarrow 0} \frac{\sqrt{2}-\sqrt{1+\cos x}}{\sin ^{2} x}$ equals-
(A) $\sqrt{2}$
(B) $\frac{\sqrt{2}}{8}$
(C) 0
(D) None of these
Q. $42 \lim _{x \rightarrow 2 a} \frac{\sqrt{x-2 a}+\sqrt{x}-\sqrt{2 a}}{\sqrt{x^{2}-4 a^{2}}}$ equals-
(A) $\frac{1}{\sqrt{\mathrm{a}}}$
(B) $\frac{1}{2 \sqrt{a}}$
(C) $\frac{1}{3 \sqrt{\mathrm{a}}}$
(D) $\frac{1}{4 \sqrt{\mathrm{a}}}$

Question based on Expansion method

Q. $43 \lim _{x \rightarrow 0} \frac{e^{\alpha x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}$ equals-
(A) 0
(B) $\alpha-\beta$
(C) -1
(D) 1
Q. $44 \lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{2} \cos x}$ equals-
(A) $1 / 3$
(B) 0
(C) 3
(D) -3
Q. $45 \lim _{x \rightarrow 0} \frac{1+\sin x-\cos x+\log (1-x)}{x^{3}}$ equals-
(A) $1 / 2$
(B) $-1 / 2$
(C) 0
(D) None of these
Q. $46 \lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{x^{3}}$ equals-
(A) 1
(B) -1
(C) $1 / 2$
(D) $-3 / 2$
Q. $47 \lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2 \cos x}{x \sin x}$ equals-
(A) 1
(B) 2
(C) -1
(D) -2
Q. $48 \lim _{x \rightarrow 0} \frac{x .2^{x}-x}{1-\cos x}$ is equal to -
(A) $\log 2$
(B) $\log 4$
(C) 0
(D) None of these
Q. $49 \lim _{x \rightarrow 0} \frac{\sqrt{x} \tan x}{\left(e^{x}-1\right)^{3 / 2}}$ equals-
(A) 0
(B) 1
(C) $1 / 2$
(D) 2

Question based on

L’'Hospital rule

Q. $50 \lim _{x \rightarrow 0} x \log x$ equals-
(A) e
(B) $1 / \mathrm{e}$
(C) 1
(D) 0
Q. $51 \lim _{x \rightarrow a} \frac{x^{m}-a^{m}}{x^{n}-a^{n}}$ equals-
(A) m / n
(B) 0
(C) $\frac{m}{n} a^{m-n}$
(D) $\frac{\mathrm{n}}{\mathrm{m}} \mathrm{a}^{\mathrm{n}-\mathrm{m}}$
Q. $52 \lim _{x \rightarrow \pi / 2} \tan x \log \sin x$ equals-
(A) 0
(B) 1
(C) -1
(D) None of these
Q. $53 \lim _{n \rightarrow \infty} n\left[a^{1 / n}-1\right]$ equals-
(A) a
(B) $\log _{\mathrm{e}} \mathrm{a}$
(C) 1
(D) None of these
Q. 54 Let $f(x)=\frac{1}{\sqrt{18-x^{2}}}$, then the value of $\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$ is-
(A) 0
(B) $-1 / 9$
(C) $-1 / 3$
(D) None of these
Q. 55 The value of $\lim _{x \rightarrow a} \frac{a^{x}-x^{a}}{x^{x}-a^{a}}=-1$, then a equals-
(A) 0
(B) 1
(C) e
(D) -1
Q. 56 The value of $\lim _{x \rightarrow 0} \frac{(16+5 x)^{1 / 4}-2}{(32+3 x)^{1 / 5}-2}$ is-
(A) $4 / 5$
(B) $25 / 6$
(C) $3 / 8$
(D) None of these
Q. $57 \lim _{x \rightarrow 0} \frac{(1+\sin x)^{1 / 3}-(1-\sin x)^{1 / 3}}{x}$ equals-
(A) 0
(B) 1
(C) $2 / 3$
(D) $1 / 3$
Q. $58 \lim _{h \rightarrow 0}\left[\frac{(x+h)^{1 / 3}-x^{1 / 3}}{h}\right]$ equals-
(A) $\frac{1}{3} x^{2 / 3}$
(B) $\frac{1}{3} x^{-2 / 3}$ (C) $\frac{1}{3} x^{1 / 3}$ (D) $3 x^{-2 / 3}$
Q. $59 \lim _{x \rightarrow 1} \frac{x+x^{2}+\ldots . .+x^{n}-n}{x-1}$ equals-
(A) n
(B) 0
(C) $\frac{\mathrm{n}^{2}}{2}$
(D) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
Q. 60 The value of $\lim _{x \rightarrow \pi / 2}[x \tan x-(\pi / 2) \sec x]$ is-
(A) -1
(B) 0
(C) 1
(D) None of these
Q. 61 The value of $\lim _{h \rightarrow 0}\left[\frac{1}{h(8+h)^{1 / 3}}-\frac{1}{2 h}\right]$ is-
(A) $1 / 12$
(B) $-4 / 3$
(C) $-16 / 3$
(D) $-1 / 48$
Q. $62 \lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\left(x-\frac{\pi}{2}\right)^{2}}$ equals-
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$
Q. 63 The value of $\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi x}{2}\right)}{1-\sqrt{x}}$ is-
(A) 0
(B) $\pi / 2$
(C) 1
(D) π
Q. 64 The value of $\lim _{x \rightarrow 1} \sec \frac{\pi}{2 x} \log x$ is-
(A) $\pi / 2$
(B) $2 / \pi$
(C) $-\pi / 2$
(D) $-2 / \pi$
Q. 65 The value of $\lim _{x \rightarrow \pi / 2} \cos x \log (\tan x)$ is-
(A) 1
(B) -1
(C) 0
(D) None of these
Q. $66 \lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}$ equals-
(A) 1
(B) -1
(C) $-1 / 2$
(D) $1 / 2$
Q. 67 The value of $\lim _{h \rightarrow 0}$ $\frac{\sin (\mathrm{x}+\mathrm{h}) \log (\mathrm{x}+\mathrm{h})-\sin \mathrm{x} \log \mathrm{x}}{\mathrm{h}}$ is-
(A) $\frac{\cos x}{x}+\log \sin x$
(B) $\frac{\cos x}{x}$
(C) $x \cos x+\log \sin x$ (D) $\cos x \log x+\frac{\sin x}{x}$
Q. $68 \lim _{x \rightarrow \pi / 4}\left(\frac{1-\tan x}{1-\sqrt{2} \sin x}\right)$ is equal to-
(A) 0
(B) 1
(C) -2
(D) 2
Q. 69 If $f(a)=3, f^{\prime}(a)=-2, g(a)=-1, g^{\prime}(a)=4$, then $\lim _{x \rightarrow a} \frac{g(x) f(a)-g(a) f(x)}{x-a}$ equals-
(A) -5
(B) 10
(C) -10
(D) 5
Q. $70 \lim _{h \rightarrow 0} \frac{(a+h)^{2} \sin (a+h)-a^{2} \sin a}{h}$ is equal to -
(A) $\mathrm{a}^{2} \cos \mathrm{a}+2 \mathrm{a} \sin \mathrm{a}$ (B) $\mathrm{a}(\cos \mathrm{a}+2 \sin \mathrm{a})$
(C) $a^{2}(\cos a+2 \sin a)$ (D) None of these
Q. 71 The value of $\lim _{x \rightarrow 0} \frac{\sqrt{(1+x)}-\sqrt{(1-x)}}{\sin ^{-1} x}$ is-
(A) 0
(B) 1
(C) -1
(D) ∞
Q. $72 \lim _{x \rightarrow 1}\left[\frac{1}{1-x}-\frac{3}{1-x^{3}}\right]$ equals-
(A) 0
(B) -1
(C) -2
(D) $1 / 3$
Q. 73 The value of $\lim _{x \rightarrow \infty} \frac{x^{5}}{5^{x}}$ is-
(A) 0
(B) 1
(C) e^{5}
(D) e^{-5}

Question based on

Some standard limit

Q. 74 The value of $\lim _{x \rightarrow 0} \frac{\log \left(1+k x^{2}\right)}{1-\cos x}$ is -
(A) 0
(B) 1
(C) k
(D) 2 k
Q. 75 The value of $\lim _{x \rightarrow 0} \frac{\cot p x}{\cot q x}$ is-
(A) 0
(B) 1
(C) q / p
(D) p / q
Q. $76 \lim _{x \rightarrow-\infty} \frac{x^{2} \tan 1 / x}{\sqrt{8 x^{2}+7 x+1}}$ is equal to -
(A) $-\frac{1}{2 \sqrt{2}}$
(B) $\frac{1}{2 \sqrt{2}}$
(C) $\frac{1}{\sqrt{2}}$
(D) Does not exist
Q. $77 \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x \cos x}$ equals-
(A) 1
(B) 2
(C) 0
(D) $1 / 2$
Q. $78 \lim _{x \rightarrow 0} \frac{\sqrt{1-\cos x^{2}}}{1-\cos x}$ equals-
(A) $\sqrt{2}$
(B) $1 / \sqrt{2}$
(C) 1
(D) None of these
Q. 79 The value of $\lim _{y \rightarrow 2}(y-2) \operatorname{cosec}$ a $(y-2)$ is-
(A) 0
(B) 1
(C) a
(D) $1 / \mathrm{a}$
Q. 80 The value of $\lim _{n \rightarrow \infty} n[\log (n+1)-\log n]$ is-
(A) 1
(B) 0
(C) -1
(D) 2
Q. $81 \lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}$ equals-
(A) e
(B) e/2
(C) -e
(D) $-\mathrm{e} / 2$
Q. $82 \lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{1+x}$ equals-
(A) 1
(B) 0
(C) 2
(D) None of these
Q. $83 \lim _{x \rightarrow 0} \frac{2 \sin ^{2} 3 x}{x^{2}}$ equals-
(A) 9
(B) 18
(C) 6
(D) 1
Q. $84 \lim _{x \rightarrow \infty}\left(\frac{x+1}{2 x+1}\right)^{x^{2}}$ equals-
(A) 0
(B) e
(C) 1
(D) ∞
Q. $85 \lim _{x \rightarrow 0} \frac{1}{x} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ is equal to -
(A) 1
(B) 0
(C) 2
(D) $1 / 2$
Q. 86 If $\lim _{x \rightarrow 0} \frac{\tan k x}{\sin 5 x}=3$, then the value of k is-
(A) 1
(B) 3
(C) 5
(D) 15
Q. $87 \lim _{x \rightarrow \infty} x\left(e^{1 / x}-1\right)$ equals-
(A) 0
(B) 1
(C) -1
(D) ∞
Q. 88 The value of $\lim _{x \rightarrow \infty} a^{x} \sin \left(b / a^{x}\right)$ is $(a>1)-$
(A) $b \log a$
(B) $a \log b$
(C) b
(D) None of these
Q. $89 \lim _{x \rightarrow 0} \frac{d}{d x} \int \frac{1-\cos x}{x^{2}} d x$ is equal to-
(A) $1 / 2$
(B) $-1 / 2$
(C) 0
(D) 1
Q. 90 If $\lim _{x \rightarrow \infty} x \sin \left(\frac{\pi}{8 x}\right) \cos \left(\frac{\pi}{8 x}\right)=k$, then value of
k is-
(A) $\pi / 4$
(B) $\pi / 3$
(C) $\pi / 2$
(D) $\pi / 8$
Q. $91 \lim _{x \rightarrow 0} \frac{1}{x^{8}}\left[1-\cos \frac{x^{2}}{2}-\cos \frac{x^{2}}{4}+\cos \frac{x^{2}}{2} \cos \frac{x^{2}}{4}\right]$ equals-
(A) $1 / 16$
(B) $1 / 24$
(C) $\frac{1}{2^{8}}$
(D) $\frac{1}{2^{9}}$

Question based on

$1^{\infty}, \infty^{0}, 0^{0}$ Forms

Q. $92 \lim _{x \rightarrow 0}\left[\frac{\log (1+x)}{x}\right]^{1 / x}$ equals-
(A) e
(B) e^{-1}
(C) e^{2}
(D) $\mathrm{e}^{-1 / 2}$
Q. $93 \lim _{x \rightarrow 0}[1+\tan x]^{\cot x}$ equals -
(A) 1
(B) e
(C) e^{-1}
(D) None of these
Q. $94 \lim _{x \rightarrow 0}(1+\mathrm{x})^{1 / x}$ equals-
(A) 1
(B) 0
(C) e
(D) $1 / \mathrm{e}$
Q. $95 \lim _{x \rightarrow 0}\left(\frac{1+x}{1-x}\right)^{1 / x}$ equals-
(A) e
(B) e^{2}
(C) $1 / \mathrm{e}$
(D) $1 / \mathrm{e}^{2}$
Q. $96 \lim _{x \rightarrow \pi / 2}(\sec x)^{\cot x}$ equals-
(A) e
(B) $1 / \mathrm{e}$
(C) 1
(D) None of these
Q. 97 The value of $\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}$ is -
(A) 1
(B) -1
(C) e
(D) $1 / \mathrm{e}$
Q. 98 The value of $\lim _{x \rightarrow \pi / 4}(\tan x)^{\tan 2 x}$ is-
(A) e
(B) e^{-1}
(C) 0
(D) -1
Q. 99 If $f(x)=\left(\frac{x}{2+x}\right)^{2 x}$, then-
(A) $\lim _{x \rightarrow \infty} f(x)=e^{-6}$
(B) $\lim _{x \rightarrow \infty} f(x)=2$
(C) $\lim _{x \rightarrow \infty} f(x)=e^{-3}$
(D) $\lim _{x \rightarrow \infty} f(x)=e^{-4}$
Q. $100 \lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{x}$ equals-
(A) a^{x}
(B) e
(C) a
(D) e^{a}
Q. $101 \lim _{x \rightarrow \infty}\left[1+\frac{4}{x-1}\right]^{x+3}=$
(A) e^{2}
(B) e
(C) e^{4}
(D) e^{3}
Q. 102 The value of $\lim _{x \rightarrow \infty} x^{1 / x}$ is -
(A) 0
(B) 1
(C) ∞
(D) None of these
Q. 103 The value of $\lim _{x \rightarrow \infty}\left(x+e^{x}\right)^{2 / x}$ is -
(A) 1
(B) 2
(C) e
(D) e^{2}

LEVEL- 2

Q. 1 If $f(x)=\left\{\begin{array}{cc}\sin x, & x \neq n \pi, n \in Z \\ 2, & \text { otherwise }\end{array}\right.$ and
$g(x)=\left\{\begin{array}{cl}x^{2}+1, & x \neq 0,2 \\ 4, & x=0 \\ 5, & x=2\end{array}\right.$ then $\lim _{x \rightarrow 0} g[f(x)]=$
(A) 0
(B) 1
(C) 2
(D) 5
Q. 2 If $[x]$ denotes the greatest integer $\leq x$, then
$\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left\{\left[1^{2} x\right]+\left[2^{2} x\right]+\left[3^{3} x\right]+\ldots .+\left[n^{2} x\right]\right.$ equals -
(A) $x / 2$
(B) $x / 3$
(C) $x / 6$
(D) 0
Q. $3 \lim _{n \rightarrow \infty}\left[\frac{1}{2.3}+\frac{1}{3.4}+\ldots . .+\frac{1}{n(n+1)}\right]$ equals-
(A) 1
(B) 0
(C) $1 / 2$
(D) 2
Q. 4 The value of $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{\left(\cos ^{-1} x\right)^{2}}$ is-
(A) $1 / 2$
(B) 1
(C) $1 / 4$
(D) 4
Q. $5 \lim _{n \rightarrow \infty}\left\{\log _{n-1}(n) \log _{n}(n+1) \ldots \log _{n^{k}-1}\left(n^{k}\right)\right\}$, $\mathrm{k} \in \mathrm{N}$ is -
(A) 0
(B) k
(C) does not exist
(D) None of these
Q. 6 The value of $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\log \left(x-\frac{\pi}{2}\right)}{\tan x}$ is-
(A) 0
(B) 1
(C) -1
(D) None of these
Q. $7 \lim _{h \rightarrow 0} 2\left[\frac{\sqrt{3} \sin \left(\frac{\pi}{6}+h\right)-\cos \left(\frac{\pi}{6}+h\right)}{\sqrt{3} h(\sqrt{3} \cosh -\sin h)}\right]$ is equal to
(A) $2 / 3$
(B) $4 / 3$
(C) $-2 \sqrt{3}$
(D) $-4 / 3$
Q. $8 \quad$ If $f(x)=\left\{\begin{array}{cc}\frac{\sin (1+[x])}{[x]} & \text { for }[x] \neq 0 \\ 0 & \text { for }[x]=0\end{array}\right.$
where $[\mathrm{x}]$ denotes the greatest integer $\leq \mathrm{x}$, $\lim _{x \rightarrow 0^{-}} f(x)$ equals -
(A) 1
(B) 0
(C) -1
(D) None of these
Q. $9 \lim _{x \rightarrow 0} \frac{\sqrt{1+x+x^{2}}-1}{\sin 4 x}$ equals-
(A) $1 / 8$
(B) $1 / 4$
(C) $1 / 2$
(D) 1
Q. 10 If $g(x)$ is a polynomial satisfying
$g(x) g(y)=g(x)+g(y)+g(x y)-2$ for all real x and y and $g(2)=5$, then $\lim _{x \rightarrow 3} g(x)$ is -
(A) -8
(B) 10
(C) 8
(D) None of these
Q. $11 \lim _{x \rightarrow-\infty} \frac{x^{5} \tan \left(\frac{1}{\pi x^{2}}\right)+3|x|^{2}+7}{|x|^{3}+7|x|+8}$ is equal to -
(A) $-\frac{1}{\pi}$
(B) 0
(C) ∞
(D) does not exist
Q. $12 \lim _{x \rightarrow 2} \frac{2^{x}+2^{3-x}-6}{(\sqrt{2})^{-x}-2^{1-x}}$ equals-
(A) 0
(B) 1
(C) 8
(D) ∞
Q. $13 \lim _{n \rightarrow \infty} \frac{4 n+(-1)^{n}}{5 n+(-1)^{n}}$ equals-
(A) 0
(B) ∞
(C) $4 / 5$
(D) Does not exist
Q. $14 \lim _{x \rightarrow \infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}$ equals-
(A) 0
(B) 1
(C) ∞
(D) None of these
Q. 15 The value of $\lim _{x \rightarrow 0} \frac{\sec 4 x-\sec 2 x}{\sec 3 x-\sec x}$ is-
(A) 1
(B) 0
(C) $3 / 2$
(D) ∞
Q. 16 If $x>0$ and g is a bounded function $\lim _{x \rightarrow \infty} \frac{f(x) e^{n x}+g(x)}{e^{n x}+1}$ is -
(A) 0
(B) $f(x)$
(C) $g(x)$
(D) None of these
Q. $17 \lim _{x \rightarrow 0} \frac{x\left(1-\sqrt{\left.1-x^{2}\right)}\right.}{\sqrt{1+x^{2}}\left(\sin ^{-1} x\right)^{3}}$ equals-
(A) 0
(B) 1
(C) $1 / 2$
(D) $1 / 4$
Q. $18 \lim _{n \rightarrow \infty}\left[\frac{1}{1-n^{2}}+\frac{2}{1-n^{2}}+\ldots .+\frac{n}{1-n^{2}}\right]$ is equal to-
(A) 0
(B) $-1 / 2$
(C) $1 / 2$
(D) None of these
Q. 19 The value of $\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}}$ equals-
(A) $\frac{1}{5}$
(B) $\frac{1}{6}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
Q. $20 \lim _{x \rightarrow 0} \frac{x}{|x|+x^{2}}$ equals-
(A) 1
(B) -1
(C) 0
(D) Does not exist
Q. $21 \lim _{x \rightarrow \infty}\left\{\frac{(x+1)^{10}+(x+2)^{10}+\ldots .+(x+100)^{10}}{x^{10}+10^{10}}\right\}$ is equal to-
(A) 10^{2}
(B) 10^{3}
(C) ∞
(D) 10^{4}
Q. $22 \lim _{x \rightarrow-\infty} \frac{x^{4} \sin (1 / x)+x^{2}}{1+|x|^{3}}$ equals-
(A) 0
(B) 1
(C) -1
(D) ∞
Q. $23 \lim _{x \rightarrow 0} \frac{x \sin x+\log (1-x)^{x}}{x^{3}}$ equals-
(A) $1 / 2$
(B) $-1 / 2$
(C) $1 / 4$
(D) $-1 / 4$
Q. 24 The value of $\lim _{x \rightarrow \tan ^{-1} 3} \frac{\tan ^{2} x-2 \tan x-3}{\tan ^{2} x-4 \tan x+3}$ is -
(A) 0
(B) 2
(C) ∞
(D) None of these
Q. 25 The value of $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ is-
(A) e^{2}
(B) 2^{4}
(C) e^{3}
(D) e^{4}
Q. $26 \lim _{x \rightarrow 0} \frac{{\sin x^{n}}_{(\sin x)^{m}}^{(m<n)} \text { is equal to- }}{(m)}$
(A) 0
(B) 1
(C) n / m
(D) m / n
Q. $27 \lim _{x \rightarrow \pi} \frac{\sqrt{2+\cos x}-1}{(\pi-x)^{2}}$ equals-
(A) $1 / 2$
(B) $1 / 3$
(C) $1 / 4$
(D) $1 / 8$
Q. $28 \lim _{x \rightarrow 1}\left(\log _{5} 5 x\right)^{\log _{x} 5}$ equals -
(A) 1
(B) e
(C) -1
(D) None of these
Q. $29 \lim _{x \rightarrow 0} \frac{a^{\sqrt{x}}-a^{1 / \sqrt{x}}}{a^{\sqrt{x}}+a^{1 / \sqrt{x}}}(a>1, x>0)$ is equal to -
(A) 1
(B) -1
(C) 0
(D) None of these
Q. $30 \lim _{x \rightarrow \pi / 2} \frac{\cot x-\cos x}{(\pi-2 x)^{3}}$ is equal to-
(A) 1
(B) $\frac{1}{16}$
(C) 16
(D) None of these
Q. 31 If $\lim _{x \rightarrow 0} \frac{x^{n}-\sin x^{n}}{x-\sin ^{n} x}$ is non-zero definite, then $n \quad$ Q. $35 \lim _{x \rightarrow \infty} x\left(\tan ^{-1}\left(\frac{x+1}{x+2}\right)-\tan ^{-1}\left(\frac{x}{x+2}\right)\right)$ must be -
(A) 1
(B) 2
(C) 3
(D) None of these
equals-
(A) 1
(B) -1
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$
Q. $32 \lim _{x \rightarrow 1 / \sqrt{2}} \frac{x-\cos \left(\sin ^{-1} x\right)}{1-\tan \left(\sin ^{-1} x\right)}$ equals-
(A) $\frac{1}{\sqrt{2}}$
(B) $-\frac{1}{\sqrt{2}}$
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$
Q. $36 \lim _{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}$ equals-
(A) 0
(B) 1
(C) ∞
(D) None of these
Q. 33 If $f^{\prime \prime}(0)=4$, then the value of $\lim _{x \rightarrow 0} \frac{2 f(x)-3 f(2 x)+f(4 x)}{x^{2}}$ is-
(A) 11
(B) 12
(C) 2
(D) 0
Q. $34 \lim _{x \rightarrow 2^{-}}\left(x+(x-[x])^{2}\right)$ equals-
where $[\mathrm{x}]$ represent greatest integer function.
(A) 0
(B) 1
(C) 2
(D) 3

LEVEL- 3

Q. 1 If [x] denotes the greatest integer less than or equal to x, then
$\lim _{n \rightarrow \infty} \frac{[x]+[2 x]+[3 x]+\ldots . .+[n x]}{n^{2}}$ equals -
(A) $\mathrm{x} / 2$
(B) $x / 3$
(C) x
(D) 0
Q. 2 The value of $\lim _{x \rightarrow 1}(2-x)^{\tan \frac{\pi x}{2}}$ is equal to -
(A) $\mathrm{e}^{-2 / \pi}$
(B) $\mathrm{e}^{1 / \pi}$
(C) $\mathrm{e}^{2 / \pi}$
(D) $\mathrm{e}^{-1 / \pi}$
Q. 3 If $\} \rightarrow$ represent fractional part of x then $\lim _{x \rightarrow\{a\}} \frac{e^{\{x\}}-\{x\}-1}{\{x\}^{2}}$ is equal to where $[\cdot]$ represent G.I.F.
(A) 0
(B) $1 / 2$
(C) e^{-2}
(D) None of these
Q. 4 Let $f(x), \lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}$ then -
(A) $\mathrm{f}(\mathrm{x})=1$, for $|\mathrm{x}|>1$
(B) $\mathrm{f}(\mathrm{x})=-1$ for $|\mathrm{x}|<1$
(C) $f(x)$ is not defined for any value of x
(D) $f(x)=1$ for $|x|=1$
Q. 5 If $f(x)=\frac{2}{x-3}, g(x)=\frac{x-3}{x+4}$ and
$h(x)=-\frac{2(2 x+1)}{x^{2}+x-12}$ then
$\lim _{x \rightarrow 3}[f(x)+g(x)+h(x)] \quad$ is-
(A) -2
(B) -1
(C) $-\frac{2}{7}$
(D) 0
Q. 6 If $A_{i}=\frac{x-a i}{|x-a i|}, i=1,2, \ldots, n$ and if $a_{1}<a_{2}<a_{3}<\ldots a_{n}$. Then $\lim _{x \rightarrow a_{m}}\left(A_{1} A_{2} \ldots . . A_{n}\right)$,
$1 \leq \mathrm{m} \leq \mathrm{n}$
(A) is equal to $(-1)^{\mathrm{m}}$
(B) is equal to $(-1)^{\mathrm{m}+1}$
(C) is equal to $(-1)^{\mathrm{m}-1}$
(D) does not exist
Q. $7 \quad$ Let $\mathrm{a}=\min ^{\mathrm{m}}\left\{\mathrm{x}^{2}+2 \mathrm{x}+3\right\} \mathrm{x} \in \mathrm{R}$ and $b=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}$ the value of $\sum_{r=1}^{n} a^{r} b^{n-r}$ is -
(A) $\frac{2^{n+1}-1}{3.2^{n}}$
(B) $\frac{2^{\mathrm{n}+1}+1}{3.2^{\mathrm{n}}}$
(C) $\frac{4^{n+1}-1}{3.2^{n}}$
(D) None of these
Q. 8 The value of $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{\sin x}{x-\sin x}}-$
(A) e^{-1}
(B) e
(C) 1
(D) None of these
Q. $9 \lim _{x \rightarrow 0}\left(\frac{1^{x}+2^{x}+3^{x}+\ldots . .+n^{x}}{n}\right)^{1 / x}$ is equal to -
(A) $(\mathrm{n}!)^{\mathrm{n}}$
(B) $(\mathrm{n}!)^{1 / n}$
(C) n !
(D) $\ell \mathrm{n}(\mathrm{n}!)$
Q. $10 \lim _{x \rightarrow \infty} \frac{2 \sqrt{x}+3 x^{1 / 3}+4 x^{1 / 4}+\ldots . .+n x^{1 / n}}{(2 x-3)^{1 / 2}+(2 x-3)^{1 / 3}+\ldots .+(2 x-3)^{1 / n}}$
(A) 1
(B) ∞
(C) $\sqrt{2}$
(D) None of these
Q. $11 \lim _{x \rightarrow 0}\left[\left(\min ^{m}\left(y^{2}-4 y+11\right)\right) \frac{\sin x}{x}\right]$ where [] represent greatest integer function is -
(A) 5
(B) 6
(C) 7
(D) None of these
Q. 12 If $f(x)$ is the integral of $\frac{2 \sin x-\sin 2 x}{x^{3}}, x \neq 0$ then find $\lim _{x \rightarrow 0} f^{\prime}(x)-$
(A) 1
(B) $1 / 2$
(C) $3 / 2$
(D) None of these
Q. 13 If $f(x)$ is a continuous function from $f: R \rightarrow R$ and attains only irrational value's then $\sum_{r=1}^{100} f(r)$ is equal to -
(A) 100
(B) $\sum_{r=101}^{200} f(r)$
(C) $\sum_{r=1}^{10} f(r)$
(D) None of these
Q. 14 The value of $\lim _{x \rightarrow 1}\left(\frac{x^{3}+2 x^{2}+x+1}{x^{2}+2 x+3}\right)^{\frac{1-\cos (x-1)}{(x-1)^{2}}}$ is -
(A) e
(B) $\mathrm{e}^{1 / 2}$
(C) 1
(D) None of these
Q. 15 Given a real valued function f such that
$f(x)= \begin{cases}\frac{\tan ^{2}\{x\}}{\left(x^{2}-[x]^{2}\right)}, & x>0 \\ 1, & x=0 \\ \sqrt{\{x\} \cot \{x\}}, & x<0\end{cases}$
where [] represent G.I.F. and \{ \} represent fractional part of x
(A) $\lim _{x \rightarrow 0^{+}} f(x)=1$
(B) $\lim _{x \rightarrow 0^{-}} f(x)=\cot 1$
(C) $\tan ^{-1}\left(\lim _{x \rightarrow 0^{+}} f(x)\right)=\pi / 4$
(D) All of the above
Q. $16 \lim _{x \rightarrow 0} \frac{\sin [\cos x]}{1+\cos [\cos x]}$ is -
(A) 1
(B) 0
(C) does not exist
(D) None of these
Q. 17 The value of $\lim _{x \rightarrow 0}\left(\left[100 \frac{x}{\sin x}\right\rceil+\left[99 \frac{\sin x}{x}\right]\right)$ where [] represent greatest integer function -
(A) 199
(B) 198
(C) 0
(D) None of these
Q. 18 If $\lim _{x \rightarrow \infty}\left(\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right)=2$ then
(A) $\mathrm{a}=1, \mathrm{~b}=1$
(B) $\mathrm{a}=1, \mathrm{~b}=2$
(C) $\mathrm{a}=1, \mathrm{~b}=-2$
(D) None of these

Statement type Questions

All questions are Assertion \& Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option.
(A) Statement-I and Statement-II are true Statement-II is the correct explanation of Statement-I
(B) Statement-I Statement-II are true but Statement-II is not the correct explanation of Statement-I.
(C) Statement-I is true but Statement-II is false
(D) Statement-I is false but Statement-II is true.
Q. 19 Statement - I : $\lim _{x \rightarrow 0}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ (where [] represent greatest integer function) does not exist.
Statement-II : $\lim _{x \rightarrow 0}\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ does not exist.
Q. 20 Statement-I : The graph of the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has a unique tangent at the point $(a, 0)$ through which the graph passes then

$$
\lim _{x \rightarrow a} \frac{\log _{e}(1+6(f(x))}{3 f(x)}=2
$$

Statement-II : Since the graph passes through $(a, 0)$. Therefore $f(a)=0$, when $f(a)=0$ given limit is zero by zero form. So that it can be evaluate by using L'Hospital's rule.
Q. 21 Statement-I : when $|x|<1$,
$\lim _{\mathrm{n} \rightarrow \infty} \frac{\log (\mathrm{x}+2)-\mathrm{x}^{2 \mathrm{n}} \cos \mathrm{x}}{\mathrm{x}^{2 \mathrm{n}}+1}=\log (\mathrm{x}+2)$
Statement-II : For $-1<x<1$,
as $\mathrm{n} \rightarrow \infty, \mathrm{x}^{2 \mathrm{n}} \rightarrow 0$.
Q. 22 Statement -I : $\lim _{x \rightarrow 0^{+}} x \sin \left(\frac{1}{x}\right)=1$

Statement -II : $\lim _{y \rightarrow \infty} y \sin \left(\frac{1}{y}\right)=1$
Q. 23 Statement -I : $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1-\cos 2 x}{2}}}{x}$ exist's.

Statement -II : $\lim _{x \rightarrow a} f(x)$ exists if the left hand limit is equal to right hand limit.
Q. 24 Statement -I : Value of $\lim _{x \rightarrow \pi / 2}(\sin x)^{\tan x}$ is 1.

Statement -II: $\lim _{x \rightarrow a}(1+f(x))^{g(x)}$ is $e^{\lim _{x \rightarrow a} f(x) g(x)}$,
If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$

Passage Based Questions

Passage :-

Let m, n are non zero integers and
$\lim _{x \rightarrow 0} \frac{\tan m x-n \sin x}{x^{3}}=$ an integer.

On the basis of above information, answer the

 following questions-Q. 25 Which of the following statement is true -
(A) m is should be an even but n is odd
(B) both $\mathrm{m} \& \mathrm{n}$ should be odd
(C) m is odd and n is even
(D) both $\mathrm{m} \& \mathrm{n}$ are even integers
Q. 26 The value of limit in terms of m \& n is -
(A) $\frac{2 m+n^{2}}{6}$
(B) $\frac{2 m^{3}+n}{6}$
(C) ∞
(D) None of these
Q. 27 Is $m \& n$ are related as -
(A) $\mathrm{m}^{2}=\mathrm{n}$
(B) $\mathrm{m}=\mathrm{n}^{2}$
(C) $m=n$
(D) None of these
Q. 28 The value of limit for $m=2$ is -
(A) 3
(B) 2
(C) $\frac{16+n}{12}$
(D) None of these

$>$ Column Matching Questions

Match the entry in Column 1 with the entry

 in Column 2.Q. $30 \lim _{x \rightarrow 0} f(x)$ is less than equal to, where

Column-I

Column-II
(A) $f(x)=\frac{e^{x}-e^{2 x}}{x} \quad$ (P) e
(B) $f(x)=\frac{e^{x}-e^{-x}}{\sin x}$
(Q) - 2
(C) $f(x)=\frac{e^{2 x}-e^{4 x}}{x}$
(R) -1
(D) $(1+\sin x)^{\operatorname{cosec} x}$
(S) 2
Q. $31 \lim _{x \rightarrow 0} f(x)$, where $f(x)$ is as in column-I is-

Column-I
Column-II
$\begin{array}{ll}\text { (A) } f(x)=\frac{\tan \left[e^{2}\right] x^{2}-\tan \left[-e^{2}\right] x^{2}}{\sin ^{2} x} & \text { (P) } \sqrt{2} / 8\end{array}$
(B) $f(x)=\frac{\left[5 / 2+\tan x+\tan ^{2} x\right]-[5 / 2]}{\tan x}$
(Q) 15
where [x] is the greatest integer function
(C) $f(x)=\frac{x \cos x-\log (1+x)}{x^{2}} \quad$ (R) 0
(D) $f(x)=\frac{\sqrt{2}-\sqrt{1+\cos x}}{\sin ^{2} x}$
(S) $1 / 2$
Q. 29 If $\lim _{x \rightarrow 0} \frac{\tan (m x)-n \sin x}{x^{3}}=$ not an integer then for $\mathrm{m}=\mathrm{n}=1$, the value of limit is-
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) 2
(D) None of these

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 If $f(1)=1, f^{\prime}(1)=2$, then $\lim _{x \rightarrow 1} \frac{\sqrt{f(x)}-1}{\sqrt{x}-1}=$
[AIEEE 2002]
(A) 2
(B) 1
(C) 3
(D) 4
Q. 2 The value of $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x}{x^{2} \sin 3 x}$ is-
[AIEEE 2002]
(A) $10 / 3$
(B) $3 / 10$
(C) $6 / 5$
(D) $5 / 6$
Q. $3 \lim _{x \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+3}\right)^{x}=$
[AIEEE 2002]
(A) e^{4}
(B) e^{2}
(C) e^{3}
(D) e
Q. $4 \lim _{x \rightarrow \infty} \frac{\log x^{n}-[x]}{[x]}, n \in N$, (where $[x]$ denotes greatest integer less than or equal to x)
[AIEEE-2002]
(A) has value -1
(B) has value 0
(C) has value 1
(D) does not exist
Q. 5 If $\lim _{x \rightarrow 0} \frac{\log (3+x)-\log (3-x)}{x}=k$, the value of k is -
[AIEEE 2003]
(A) $-\frac{2}{3}$
(B) 0
(C) $-\frac{1}{3}$
(D) $\frac{2}{3}$
Q. 6 Let $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})=\mathrm{k}$ and their $\mathrm{n}^{\text {th }}$ derivatives $\mathrm{f}^{\mathrm{n}}(\mathrm{a}), \mathrm{g}^{\mathrm{n}}(\mathrm{a})$ exist and are not equal for some n .
Further if $\lim _{x \rightarrow a} \frac{f(a) g(x)-f(a)-g(a) f(x)+g(a)}{g(x)-f(x)}$ $=4$ then the value of k is-
[AIEEE 2003]
(A) 0
(B) 4
(C) 2
(D) 1
Q. $7 \lim _{x \rightarrow \pi / 2} \frac{\left[1-\tan \left(\frac{x}{2}\right)\right]^{[1-\sin x]}}{\left[1+\tan \left(\frac{x}{2}\right)\right]\left[[\pi-2 x]^{3}\right.}$ is-
[AIEEE 2003]
(A) ∞
(B) $\frac{1}{8}$
(C) 0
(D) $\frac{1}{32}$
Q. 8 If $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}+\frac{b}{x^{2}}\right)^{2 x}=e^{2}$, then the values of a and b, are-
[AIEEE 2004]
(A) $a \in R, b \in R$
(B) $\mathrm{a}=1, \mathrm{~b} \in \mathrm{R}$
(C) $\mathrm{a} \in \mathrm{R}, \mathrm{b}=2$
(D) $\mathrm{a}=1$ and $\mathrm{b}=2$
Q. 9 Let α and β be the distinct roots of $a x^{2}+b x+c=0$, then $\lim _{x \rightarrow \alpha} \frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}$ is equal to -
[AIEEE-2008]
(A) $\frac{a^{2}}{2}(\alpha-\beta)^{2}$
(B) 0
(C) $\frac{-\mathrm{a}^{2}}{2}(\alpha-\beta)^{2}$
(D) $\frac{1}{2}(\alpha-\beta)^{2}$
Q. $10 \lim _{x \rightarrow 2}\left(\frac{\sqrt{1-\cos \{2(x-2)\}}}{x-2}\right)$
[AIEEE-2011]
(A) does not exist
(B) equals $\sqrt{2}$
(C) equals $-\sqrt{2}$
(D) equals $\frac{1}{\sqrt{2}}$

SECTION-B

Q. $1 \lim _{x \rightarrow \pi / 4} \frac{\sqrt{2} \cos x-1}{\cot x-1}=$
[IIT-1990]
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{2 \sqrt{2}}$
(D) 1
Q. 2

$$
\lim _{x \rightarrow \infty} \frac{(2 x+1)^{40}(4 x-1)^{5}}{(2 x+3)^{45}}=
$$

[IIT-1990]
(A) 16
(B) 24
(C) 32
(D) 8
Q. $3 \lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}=$
[IIT -1991]
(A) 1
(B) -1
(C) 0
(D) None
Q. $4 \lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0$ for
[IIT-1992]
(A) no value of n
(B) n is any whole number
(C) $\mathrm{n}=0$ only
(D) $\mathrm{n}=2$ only
Q. $5 \lim _{x \rightarrow 0}\left(\frac{x}{\tan ^{-1} 2 x}\right)=$
[IIT-1992]
(A) 0
(B) $1 / 2$
(C) 2
(D) ∞
Q. $6 \lim _{x \rightarrow 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{1 / x}=$
[IIT- 1993]
(A) 1
(B) -1
(C) e^{2}
(D) e
Q. $7 \lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{1 / x^{2}}=$
(A) e^{2}
(B) e
(C) e^{-2}
(D) e^{-1}
Q. 8 The value of $\lim _{h \rightarrow 0} \frac{\log (1+2 h)-2 \log (1+h)}{h^{2}}$ is-
[IIT-1997]
(A) 1
(B) -1
(C) 0
(D) None of these
Q. $9 \lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}=$
[IIT-1998 similar to IIT- 1991]
(A) does not exist because $\mathrm{LHL} \neq \mathrm{RHL}$
(B) exists and it equals $-\sqrt{2}$
(C) does not exist because $x-1 \rightarrow 0$
(D) exists and it equals $\sqrt{2}$
Q. $10 \lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}$ is-
[IIT-1999]
(A) $\frac{1}{2}$
(B) -2
(C) 2
(D) $-\frac{1}{2}$
Q. 11 For $x \in R, \lim _{x \rightarrow \infty}\left(\frac{x-3}{x+2}\right)^{x}=$
[IIT Scr. 2000]
(A) e
(B) e^{-1}
(C) e^{-5}
(D) e^{5}
Q. $12 \lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ equals -
[IIT Scr. 2001]
(A) $-\pi$
(B) π
(C) $\pi / 2$
(D) 1
Q. 13 The value of Integer n; for which
$\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ is a finite non zero number-
[IIT Scr. 2002]
(A) 1
(B) 2
(C) 3
(D) 4
Q. 14 Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ such that $\mathrm{f}(1)=3$ and $\mathrm{f}^{\prime}(1)=6$. then $\lim _{x \rightarrow 0}\left(\frac{f(1+x)}{f(1)}\right)^{1 / x}$ equals -
[IIT Scr. 2002]
(A) 1
(B) $\mathrm{e}^{1 / 2}$
(C) e^{2}
(D) e^{3}
Q. 15 If $\lim _{x \rightarrow 0} \frac{(\sin n x)[(a-n) n x-\tan x]}{x^{2}}=0$ then the value of a is-
[IIT Scr.2003]
(A) $\frac{1}{n+1}$
(B) $\frac{\mathrm{n}}{\mathrm{n}+1}$
(C) $\mathrm{n}+\frac{1}{\mathrm{n}}$
(D) n
Q. 16 If $f(x)$ is a differentiable function and $f^{\prime}(2)=6$, $\mathrm{f}^{\prime}(1)=4, \mathrm{f}^{\prime}(\mathrm{c})$ represents the differentiation of $f(x)$ at $x=c$, then $\lim _{h \rightarrow 0} \frac{f\left(2+2 h+h^{2}\right)-f(2)}{f\left(1+h^{2}+h\right)-f(1)}$
[IIT Scr.2003]
(A) may exist
(B) will not exist
(C) is equal to 3
(D) is equal to -3
Q. 17 Let $f(x)$ be strictly increasing and differentiable, then $\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(x)}{f(x)-f(0)}$ is-
[IIT Scr.2004]
(A) 1
(B) -1
(C) 0
(D) 2
Q. $18 \lim _{x \rightarrow 0}\left((\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right)$, for $x>0-$
[IIT-2006]
(A) 0
(B) -1
(C) 2
(D) 1
Q. 19 Let $L=\lim _{x \rightarrow 0} \frac{a-\sqrt{a^{2}-x^{2}}-\frac{x^{2}}{4}}{x^{4}}, a>0$. If L is finite, then
[IIT- 2009]
(A) $\mathrm{a}=2$
(B) $a=1$
(C) $\mathrm{L}=\frac{1}{64}$
(D) $\mathrm{L}=\frac{1}{32}$
Q. 20 If $\operatorname{Lim}_{x \rightarrow 0}\left[1+x \ln \left(1+b^{2}\right)\right]^{\frac{1}{x}}=2 \operatorname{bsin}^{2} \theta, b>0$ and $\theta \in(-\pi, \pi]$, then the value of θ is - [IIT- 2011]
(A) $\pm \frac{\pi}{4}$
(B) $\pm \frac{\pi}{3}$
(C) $\pm \frac{\pi}{6}$
(D) $\pm \frac{\pi}{2}$

ANSWER KEY

LEVEL-1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	A	C	D	D	B	B	A	A	C	D	D	D	A	D	A	A	A	D	C	B
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	A	B	B	C	A	A	B	C	A	B	B	B	B	D	D	D	B	D	D	A
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	B	B	D	B	B	C	B	B	B	D	C	A	B	D	B	B	C	B	D	A
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	D	C	D	B	C	C	D	D	B	A	B	B	A	D	C	A	C	A	D	A
Q.No.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	D	C	B	A	C	D	B	C	A	D	C	D	B	C	B	C	D	B	D	D
Q.No.	101	102	103																	
Ans.	C	B	D																	

LEVEL-2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	B	B	C	C	B	A	B	B	A	B	A	C	C	B	C	B	C	B	B	D
Q.No.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$				
Ans.	A	C	B	B	D	A	C	B	B	B	A	B	B	D	C	B				

LEVEL- 3

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	C	D	A, B	C	D	C	A	B	C	B	A	B	D	D	B	B	C	B	A
Q.No.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$											
Ans.	A	D	D	A	D	B	C	A	A											

30. (A) $\rightarrow P, R, S$; (B) $\rightarrow P, S$; (C) $\rightarrow P, Q, R, S ;(D) \rightarrow P \quad$ 31. (A) $\rightarrow Q$; (B) $\rightarrow R ;(C) \rightarrow S ;(D) \rightarrow P$

LEVEL- 4

SECTION-A

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Ans.	A	A	A	A	D	B	D	B	A	A

SECTION-B

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Ans.	B	C	D	B	B	C	A	B	A	A	C	B
Q.No.	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$				
Ans.	C	C	C	C	B	D	A, C	D				

