CONTINUITY AND DIFFERENTIABILITY

Syllabus

- 1. Continuity of a function at a point
- 2. Continuity from a left & right
- 3. Continuity of a function in an interval
- 4. Continuous functions
- 5. Discontinuous functions
- 6. Properties of continuous function
- 7. Differentiability of a function and properties

Total No. of questions in Continuity and Differentiability are:		
Solved examples	17	
Level # 1	91	
Level # 2	27	
Level # 3		
Level # 4	31	
Total No. of questions		

- 1. Students are advised to solve the questions of exercises (Levels # 1, 2, 3, 4) in the same sequence or as directed by the faculty members.
- 2. Level # 3 is not for foundation course students, it will be discussed in fresher and target courses.

Index : Preparing your own list of Important/Difficult Questions

Instruction to fill

- (A) Write down the Question Number you are unable to solve in **column A** below, by Pen.
- (B) After discussing the Questions written in **column A** with faculties, strike off them in the manner so that you can see at the time of Revision also, to solve these questions again.
- (C) Write down the Question Number you feel are important or good in the column B.

EXERCISE NO.	COLUMN :A	COLUMN :B
	Questions I am unable to solve in first attempt	Good/Important questions
Level # 1		
Level # 2		
Level # 3		
Level # 4		

Advantages

- 1. It is advised to the students that they should prepare a question bank for the revision as it is very difficult to solve all the questions at the time of revision.
- 2. Using above index you can prepare and maintain the questions for your revision.

KEY CONCEPTS

1. Introduction

The word **'Continuous'** means without any break or gap. If the graph of a function has no break or gap or jump, then it is said to be **continuous**.

A function which is not continuous is called a **discontinuous function**.

In other words,

If there is slight (finite) change in the value of a function by slightly changing the value of x then function is continuous, otherwise discontinuous, while studying graphs of functions, we see that graphs of functions sin x, x, cos x, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly tan x, cot x, secx, 1/x etc. are also discontinuous function.

For examining continuity of a function at a point, we find its limit and value at that point, If these two exist and are equal, then function is continuous at that point.

2. Continuity of a Function at a Point

A function f(x) is said to be continuous at a point x = a if

```
(i) f (a) exists
```

(ii) $\lim_{x \to a} f(x)$ exists and finite

```
so \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)
```

(iii) Lim f(x) = f(a).

or function f(x) is continuous at x = a.

If $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$.

i.e. If right hand limit at 'a' = left hand limit at 'a' = value of the function at 'a'.

If $\lim_{x \to a} f(x)$ does not exist or $\lim_{x \to a} f(x) \neq f(a)$, then f(x) is said to be discontinuous at x = a.

3. Continuity from Left and Right

Function f(x) is said to be

(i) Left continuous at x = a if

 $\lim_{x \to a^{-0}} f(x) = f(a)$

(ii) right continuous at x = a if

 $\lim_{x \to a+0} f(x) = f(a)$

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at x = a.

4. Continuity of a Function in an Interval

(a) A function f(x) is said to be continuous in an open interval (a,b) if it is continuous at every point in (a, b).
For example function y = sin y = cos y

For example function $y = \sin x$, $y = \cos x$, $y = e^x$ are continuous in $(-\infty, \infty)$.

- (**b**) A function f(x) is said to be continuous in the closed interval [a, b] if it is-
 - (i) Continuous at every point of the open interval (a, b).
 - (ii) Right continuous at x = a.
 - (iii) Left continuous at x = b.

5. Continuous Functions

A function is said to be continuous function if it is continuous at every point in its domain. Following are examples of some continuous function.

- (i) f(x) = x (Identity function) (ii) f(x) = C (Constant function) (iii) $f(x) = x^2$ (iv) $f(x) = a_0x^n + a_1x^{n-1} + + a^n$ (Polynomial). (v) f(x) = |x|, x + |x|, x - |x|, x|x|(vi) $f(x) = \sin x, f(x) = \cos x$ (vii) $f(x) = e^x, f(x) = a^x, a > 0$ (viii) $f(x) = \log x, f(x) = \log_a x, a > 0$ (ix) $f(x) = \sinh x, \cosh x, \tanh x$ (x) $f(x) = x^m \sin (1/x), m > 0$ $f(x) = x^m \cos (1/x), m > 0$
- $f(x) = x^{-1} \cos(1/x), \text{ m/ } 0$

6. Discontinuous Functions

A function is said to be a discontinuous function if it is discontinuous at at least one point in its domain. Following are examples of some discontinuous function-

(i) f(x) = 1/x at x = 0(ii) $f(x) = e^{1/x}$ at x = 0(iii) $f(x) = \sin 1/x$, $f(x) = \cos 1/x$ at x = 0(iv) f(x) = [x] at every integer (v) f(x) = x - [x] at every integer (vi) $f(x) = \tan x$, $f(x) = \sec x$ when $x = (2n+1) \pi/2$, $n \in \mathbb{Z}$. (vii) $f(x) = \cot x$, $f(x) = \csc x$ when $x = n\pi$, $n \in \mathbb{Z}$.

(vii) $f(x) = \cot x$, $f(x) = \operatorname{cosec} x$ when $x = n\pi$, $n \in \mathbb{Z}$. (viii) $f(x) = \coth x$, $f(x) = \operatorname{cosech} x$ at x = 0.

7. Properties of Continuous Functions

The sum, difference, product, quotient (If $Dr \neq 0$) and composite of two continuous functions are always continuous functions. Thus if f(x) and g(x)are continuous functions then following are also continuous functions:

(a) f(x) + g(x)

- (b) f(x) g(x)
- (c) $f(x) \cdot g(x)$

(d) λ f(x) , where λ is a constant

- (e) f(x)/g(x), if $g(x) \neq 0$
- (f) f[g(x)]

Note :

The product of one continuous and one discontinuous function may or may not be continuous.

DIFFERENTIABILITY

8. Differentiability of a Function

A function f(x) is said to be differentiable at a point of its domain if it has a finite derivative at that point. Thus f(x) is differentiable at x = a

$$\Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ exists finitely}$$
$$= \lim_{h \to 0} \frac{f(a - h) - f(a)}{-h} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$
$$f'(a - 0) = f'(a + 0)$$

left- hand derivative = Right-hand derivative.

Generally derivative of f(x) at x = a is denoted by

$$f'(a)$$
. So $f'(a) = \frac{f(x) - f(a)}{x - a}$

Note : (i) Every differentiable function is necessarily continuous but every continuous function is not necessarily differentiable i.e. Differentiability \Rightarrow continuity but continuity \Rightarrow differentiability

8.1 Differentiability in an interval

- (a) A function f(x) is said to be differentiable in an open interval (a,b), if it is differentiable at every point of the interval.
- (**b**) A function f(x) is differentiable in a closed interval [a,b] if it is –
- (i) Differentiable at every point of interval (a,b)
- (ii) Right derivative exists at x = a
- (iii) Left derivative exists at x = b.

8.2 Differentiable function & their properties

A function is said to be a differentiable function if it is differentiable at every point of its domain.

- (a) Example of some differentiable functions:-
- (i) Every polynomial function
- (ii) Exponential function : a^x , e^x , e^{-x}
- (iii) logarithmic functions : log _ax, log_ex ,.....
- (iv) Trigonometrical functions : sin x, cos x,
- (v) Hyperbolic functions : sinhx, coshx,.....
- (**b**) Examples of some non– differentiable functions:
- (i) |x| at x = 0
- (ii) $x \pm |x|$ at x = 0
- (iii) [x], $x \pm [x]$ at every $n \in Z$

(iv)
$$x \sin\left(\frac{1}{x}\right)$$
, at $x = 0$

(v) $\cos\left(\frac{1}{x}\right)$, at x = 0

(c) The sum, difference, product, quoteint

 $(Dr \neq 0)$ and composite of two differentiable functions is always a differentiable function.