SOLVED EXAMPLES

Ex. 1 Function $f(x)=\left\{\begin{array}{l}-1, \text { when } x<-1 \\ -x, \text { when }-1 \leq x \leq 1 \\ 1, \text { when } x>1\end{array}\right.$ is
continuous -
(A) Only at $x=1$
(B) Only at $x=-1$
(C) At both $x=1$ and $x=-1$
(D) Neither at $x=1$ nor at $x=-1$

Sol. $\quad f(-1-0)=-1, f(-1)=-(-1)=1$
$\Rightarrow \mathrm{f}(-1-0) \neq \mathrm{f}(-1)$
$\Rightarrow f(x)$ is not continuous at $x=-1$
Further, $f(1)=-1$
$f(1+0)=1$

$$
\Rightarrow \mathrm{f}(1) \neq \mathrm{f}(1+0)
$$

$\Rightarrow f(x)$ is not continuous at $x=1$.
Ans.[D]
Ex. 2 If $f(x)= \begin{cases}x^{k} \cos (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}$
is continuous at $x=0$, then -
(A) $\mathrm{k}<0$
(B) $\mathrm{k}>0$
(C) $\mathrm{k}=0$
(D) $\mathrm{k} \geq 0$

Sol. Since $f(x)$ is continuous at $x=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$
but $f(0)=0$ (given)

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{k} \cos (1 / x) \\
& \quad=0, \text { if } k>0
\end{aligned}
$$

Ans.[B]
Ex. 3 If $f(x)=\left\{\begin{array}{cc}\frac{1}{2}-x, & 0<x<\frac{1}{2} \\ 0, & x=0 \\ \frac{1}{2}, & x=\frac{1}{2} \\ \frac{3}{2}-x, & \frac{1}{2}<x<1 \\ 1, & x=1\end{array}\right.$
then wrong statement is -
(A) $f(x)$ is discontinuous at $x=0$
(B) $f(x)$ is continuous at $x=1 / 2$
(C) $f(x)$ is discontinuous at $x=1$
(D) $f(x)$ is continuous at $x=1 / 4$

Sol. Obviously function $f(x)$ is discontinuous at $x=0$ and $x=1$ because the function is not defined, when $\mathrm{x}<0$ and $\mathrm{x}>1$, therefore $\mathrm{f}(0-0)$ and $\mathrm{f}(1+0)$ do not exist. Again

$$
\begin{aligned}
& \mathrm{f}\left(\frac{1}{2}+0\right)=\lim _{\mathrm{x} \rightarrow 1 / 2}\left(\frac{3}{2}-\mathrm{x}\right)=1 \\
& \mathrm{f}\left(\frac{1}{2}-0\right)=\lim _{\mathrm{x} \rightarrow 1 / 2}\left(\frac{1}{2}-\mathrm{x}\right)=0 \\
& \because \mathrm{f}\left(\frac{1}{2}+0\right) \neq \mathrm{f}\left(\frac{1}{2}-0\right)
\end{aligned}
$$

function $f(x)$ is discontinuous at $x=\frac{1}{2}$ Ans.[B]
Ex. 4 If $f(x)=\left\{\begin{array}{cc}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}} & , x \neq 2 \\ k, & x=2\end{array}\right.$ is continuous for all values of x, then the value of k is -
(A) 5
(B) 6
(C) 7
(D) 8

Sol. $\quad \because f(x)$ is continuous at $x=2$
$\therefore \mathrm{f}(2-0)=\mathrm{f}(2+0)=\mathrm{f}(2)=\mathrm{k}$
But $f(2+0)$
$=\lim _{h \rightarrow 0} \frac{(2+\mathrm{h})^{3}+(2+\mathrm{h})^{2}-16(2+\mathrm{h})+20}{(2+\mathrm{h}-2)^{2}}$
$=\lim _{h \rightarrow 0} \frac{h^{3}+7 h^{2}}{h^{2}}=7$
Ans. [C]

Ex. 5 If the function $f(x)=\left\{\begin{array}{cc}1, & x \leq 2 \\ a x+b, & 2<x<4 \\ 7, & x \geq 4\end{array}\right.$
is continuous at $x=2$ and 4 , then the values of a and b are-
(A) 3,5
(B) $3,-5$
(C) 0,3
(D) 0,5

Sol. Since $f(x)$ is continuous at $x=2$

$$
\begin{align*}
& \therefore \mathrm{f}(2)=\lim _{\mathrm{x} \rightarrow 2^{+}} \mathrm{f}(\mathrm{x}) \\
& \Rightarrow 1=\lim _{\mathrm{x} \rightarrow 2^{+}}(\mathrm{ax}+\mathrm{b}) \\
& \therefore \quad 1=2 \mathrm{a}+\mathrm{b} \tag{1}
\end{align*}
$$

Again $f(x)$ is continuous at $x=4$,

$$
\begin{align*}
& \therefore \mathrm{f}(4)=\lim _{\mathrm{x} \rightarrow 4^{-}} \mathrm{f}(\mathrm{x}) \\
& \Rightarrow 7=\lim _{x \rightarrow 4}(\mathrm{ax}+\mathrm{b}) \\
& \therefore 7=4 \mathrm{a}+\mathrm{b} \tag{2}
\end{align*}
$$

Solving (1) and (2), we get $\mathrm{a}=3, \mathrm{~b}=-5$.Ans.[B]

Ex. 6 If $f(x)=\left\{\begin{array}{l}x, \text { when } x \in Q \\ -x, \text { when } x \notin Q\end{array}\right.$, then $f(x)$
is continuous at -
(A) All rational numbers
(B) Zero only
(C) Zero and 1 only
(D) No where

Sol. Let us first examine continuity at $\mathrm{x}=0$.
$\mathrm{f}(0)=0 \quad(\because 0 \in \mathrm{Q})$
$=f(0-0)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)$
$=\lim _{\mathrm{h} \rightarrow 0}\{-\mathrm{h}$ or h according as $-\mathrm{h} \in \mathrm{Q}$ or $-\mathrm{h} \notin \mathrm{Q})$
$=0$
$f(0+0)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)$
$=\lim _{\mathrm{h} \rightarrow 0}\{\mathrm{~h}$ or -h$\}=0$
$\mathrm{f}(0)=\mathrm{f}(0-0)=\mathrm{f}(0+0)$
$\Rightarrow \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
Now let $\mathrm{a} \in R, \mathrm{a} \neq 0$, then

$$
\begin{aligned}
& f(a-0)=\lim _{h \rightarrow 0} f(a-h) \\
& =\lim _{h \rightarrow 0}\{(a-h) \text { or }-(a-h)\}
\end{aligned}
$$

$$
=\mathrm{a} \text { or }-\mathrm{a}, \text { which is not unique. }
$$

$\Rightarrow \mathrm{f}(\mathrm{a}-0)$ does not exist
$\Rightarrow f(x)$ is not continuous at $a \in R_{0}$.
Hence $f(x)$ is continuous only at $x=0$. Ans.[B]

Ex. $7 \mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}]$ is continuous at -
(A) $x=0$
(B) $x=-1$
(C) $x=1$
(D) $x=1 / 2$

Sol. We know that [x] is discontinuous at every integer. Therefore it is continuous only at $x=1 / 2$, while the function x is continuous at all points $x=0,-1,1,1 / 2$. Thus the given function is continuous only at $\mathrm{x}=1 / 2$.

Ans.[D]
Ex. 8 If $f(x)= \begin{cases}\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, & x<\pi / 2 \\ a, & x=\pi / 2 \text { is continuous at } \\ \frac{b(1-\sin x)}{(\pi-2 x)^{2}}, & x>\pi / 2\end{cases}$ $\mathrm{x}=\pi / 2$, then value of a and b are-
(A) $1 / 2,1 / 4$
(B) 2,4
(C) $1 / 2,4$
(D) $1 / 4,2$

Sol. $f\left(\frac{\pi}{2}-0\right)=\lim _{h \rightarrow 0} \frac{1-\sin ^{3}\left(\frac{\pi}{2}-h\right)}{3 \cos ^{2}\left(\frac{\pi}{2}-h\right)}$
$=\lim _{h \rightarrow 0} \frac{1-\cos ^{3} h}{3 \sin ^{2} h}$
$=\lim _{h \rightarrow 0} \frac{(1-\cosh)\left(1+\cosh +\cos ^{2} h\right)}{3(1-\cosh)(1+\cosh)}$
$=1 / 2$

$$
\begin{aligned}
f\left(\frac{\pi}{2}\right. & +0)=\lim _{h \rightarrow 0} \frac{\mathrm{~b}\left[1-\sin \left(\frac{\pi}{2}+\mathrm{h}\right)\right]}{\left[\pi-2\left(\frac{\pi}{2}+\mathrm{h}\right)\right]} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~b}(1-\cosh)}{4 \mathrm{~h}^{2}} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{2 \mathrm{~b} \sin ^{2} \mathrm{~h} / 2}{4 h^{2}}=\frac{b}{8}
\end{aligned}
$$

Now $f(x)$ is continuous at $x=\frac{\pi}{2}$
$\Rightarrow \mathrm{f}\left(\frac{\pi}{2}-0\right)=\mathrm{f}\left(\frac{\pi}{2}+0\right)=\mathrm{f}\left(\frac{\pi}{2}\right) \Rightarrow \frac{1}{2}=\frac{\mathrm{b}}{8}=\mathrm{a}$
$\therefore \mathrm{a}=1 / 2, \mathrm{~b}=4 \quad$ Ans.[C]

Ex. 9 If the function
$f(x)=\left\{\begin{array}{l}1+\sin \frac{\pi}{2} \times \text { for }-\infty<x \leq 1 \\ a x+b \text { for } 1<x<3 \\ 6 \tan \frac{x \pi}{12} \text { for } 3 \leq x<6\end{array}\right.$
is continuous in the interval $(-\infty, 6)$, then the value of a and b are respectively -
(A) 0,2
(B) 1,1
(C) 2,0
(D) 2,1

Sol. Obviously the function $f(x)$ is continuous at $x=1$ and 3. Therefore $\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
$\Rightarrow \mathrm{a}+\mathrm{b}=2$
and $\lim _{x \rightarrow 3^{-}} f(x)=f(3)$
$\Rightarrow 3 \mathrm{a}+\mathrm{b}=6$
Solving (1) and (2), we get $\mathrm{a}=2, \mathrm{~b}=0$. Ans.[C]

Ex. 10 If $f(x)=\left\{\begin{array}{l}\frac{1-\cos 4 x}{x^{2}}, x<0 \\ a, \quad x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, x>0\end{array}\right.$
then at $\mathrm{x}=0$ -
(A) $f(x)$ is continuous, when $a=0$
(B) $f(x)$ is continuous, when $a=8$
(C) $f(x)$ is discontinuous for every value of a
(D) None of these

Sol. $\quad f(0-0)=\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{x^{2}}=\frac{2 \sin ^{2} 2 x}{x^{2}}=8$

$$
\begin{aligned}
& f(0+0)=\lim _{x \rightarrow 0} \frac{\sqrt{x}}{(\sqrt{16+\sqrt{x}}-4)} \times \frac{\sqrt{16+\sqrt{x}}+4}{\sqrt{16+\sqrt{x}}+4} \\
& \quad=\lim _{x \rightarrow 0} \frac{\sqrt{x}(\sqrt{16+\sqrt{x}}+4)}{16+\sqrt{x}-16}=8
\end{aligned}
$$

$\because \quad \mathrm{f}(0+0)=\mathrm{f}(0-0)$
$\therefore \mathrm{f}(\mathrm{x})$ can be continuous at $\mathrm{x}=0$, if

$$
\mathrm{f}(0)=\mathrm{a}=8 .
$$

Ans.[B]

Ex. 11 If $f(x)=\lim _{x \rightarrow 0}\left\{\begin{array}{l}\frac{\sin [x]}{[x]+1}, x>0 \\ \frac{\cos \frac{x}{2[x]}}{[x]}, x<0 \\ k, \quad x=0\end{array}\right.$
(Where $[\mathrm{x}]=$ greatest integer $\leq \mathrm{x}$) is continuous at $x=0$, then k is equal to -
(A) 0
(B) 1
(C) -1
(D) Indeterminate

Sol. As given $f(0-0)=f(0+0)=k$

$$
\begin{aligned}
& \text { Now } f(0-0)=\lim _{h \rightarrow 0} \frac{\cos \frac{(-h)}{2[-h]}}{[-h]} \\
& \quad=\lim _{h \rightarrow 0} \frac{\cos \left(\frac{-h}{2(-1)}\right)}{-1}=-1 \\
& f(0+0)=\lim _{h \rightarrow 0} \frac{\sin [h]}{[h]+1}=\lim _{h \rightarrow 0} \frac{\sin 0}{0+1}=0
\end{aligned}
$$

$\because \mathrm{f}(0-0) \neq \mathrm{f}(0+0)$, so k is indeterminate.

Ans.[D]

Ex. 12 If $f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|},-\pi / 6<x<0 \\ b\end{array}, \quad x=0 \quad\left(\begin{array}{cc}b \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\pi / 6\end{array}\right.\right.$
is continuous at $\mathrm{x}=0$, then value of a, b are -
(A) $2 / 3, \mathrm{e}^{2 / 3}$
(B) $1 / 3, \mathrm{e}^{1 / 3}$
(C) $2 / 3,1 / 3$
(D) None of these

Sol. $\quad f(0-0)=\lim _{h \rightarrow 0}(1+|\sin (-h)|)^{a / \sin (-h) \mid}$

$$
\begin{gathered}
=(1+\sin h)^{a / \sin h}=e^{a} \\
f(0+0)=\lim _{h \rightarrow 0} e^{\frac{\tan 2 h}{\tan 3 h}}=e^{\lim _{h \rightarrow 0}\left(\frac{\tan 2 h}{\tan 3 h}\right)}
\end{gathered}
$$

$$
=e^{\lim _{h \rightarrow 0} \frac{2 \sec ^{2} 2 h}{3 \sec ^{2} 3 h}}=e^{2 / 3}
$$

Now $f(x)$ is continuous at $x=0$
$\Rightarrow \mathrm{f}(0-0)=\mathrm{f}(0+0)=\mathrm{f}(0)$
$\Rightarrow \mathrm{e}^{\mathrm{a}}=\mathrm{e}^{2 / 3}=\mathrm{b}$
$\therefore \quad \mathrm{a}=2 / 3, \mathrm{~b}=\mathrm{e}^{2 / 3}$
Ans.[A]

Ex. $13 f(x)=|x|$ is not differentiable at -
(A) $x=-1$
(B) $x=0$
(C) $x=1$
(D) None of these

Sol. at $\mathrm{x}=0$:
$f^{\prime}(0-0)=\lim _{h \rightarrow 0} \frac{|0-h|-0}{-h}=-1$
$\mathrm{f}^{\prime}(0+0)=\lim _{\mathrm{h} \rightarrow 0} \frac{|0+\mathrm{h}|-0}{\mathrm{~h}}=1$
Now, since f ${ }^{\prime}(0-0) \neq \mathrm{f}^{\prime}(0+0)$
$\Rightarrow f(x)$ is not differentiable at $x=0$. Ans.[B]
Ex. 14 Function $f(x)=\lim _{h \rightarrow 0}\left\{\begin{array}{ll}-x, & \text { if } \quad x<0 \\ x^{2}, & \text { if } 0 \leq x \leq 1, \\ x^{3}-x+1, & \text { if } x>1\end{array}\right.$ is
differentiable at -
(A) $x=0$ but not at $x=1$
(B) $x=1$ but not at $x=0$
(C) $x=0$ and $x=1$ both
(D) neither $\mathrm{x}=0$ nor $\mathrm{x}=1$

Sol. Differentiability at $x=0$

$$
\begin{aligned}
& R\left[f^{\prime}(0)\right]=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(0+h)^{2}-0}{h}=\lim _{h \rightarrow 0} h=0 \\
& L\left[f^{\prime}(0)\right]=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h} \\
& \quad=\lim _{h \rightarrow 0} \frac{-(0-h)-0}{-h}=-1
\end{aligned}
$$

$\because \quad \mathrm{R}\left[\mathrm{f}^{\prime}(0)\right] \neq \mathrm{L}\left[\mathrm{f}^{\prime}(0)\right]$
$\therefore f(x)$ is not differentiable at $x=0$
Differentiability at $\mathrm{x}=1$

$$
\begin{aligned}
& R\left[f^{\prime}(1)\right]=\lim _{h \rightarrow 0} \frac{f(1+h)^{3}-f(1)}{h} \\
& \quad=\lim _{h \rightarrow 0} \frac{(1+h)^{3}-(1+h)+1-1}{h} \\
& \quad=\lim _{h \rightarrow 0} \frac{2 h+3 h^{2}+h^{3}}{h}=2
\end{aligned}
$$

$$
L\left[f^{\prime}(1)\right]=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}
$$

$$
=\lim _{h \rightarrow 0} \frac{(1-h)-1}{-h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-2 h+h^{2}}{-h}=2
$$

Thus R [f ' (1)] = L f '(1)]
\therefore function $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1 \quad$ Ans.[B]
Ex. 15 If $f(x)=\left\{\begin{array}{c}3^{x},-1 \leq x \leq 1 \\ 4-x, 1<x<4\end{array}\right.$
then at $\mathrm{x}=1, \mathrm{f}(\mathrm{x})$ is -
(A) Continuous but not differentiable
(B) Neither continuous nor differentiable
(C) Continuous and differentiable
(D) Differentiable but not continuous

Sol. Since $f(1-0)=\lim _{x \rightarrow 1} 3^{x}=3$

$$
\begin{aligned}
& f(1+0)=\lim _{x \rightarrow 1}(4-x)=3 \\
& \text { and } f(1)=3^{1}=3 \\
& f(1-0)=f(1+0)=f(1) \\
& \therefore f(x) \text { is continuous at } x=1 \\
& \Rightarrow \text { Again } f^{\prime}(1+0)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} \\
& \quad=\lim _{x \rightarrow 1} \frac{3^{x}-3}{x-1} \\
& \quad=\lim _{h \rightarrow 0} \frac{3^{1+h}-3}{h} \\
& \quad=3 \lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \\
& =3 \log ^{h}
\end{aligned}
$$

and $\mathrm{f}^{\prime}(1+0) \quad \lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}$

$$
=\lim _{x \rightarrow 1} \frac{4-x-3}{x-1}=-1
$$

$\therefore \mathrm{f}^{\prime}(1+0) \neq \mathrm{f}^{\prime}(1-0)$
$\neq f(x)$ is not differentiable at $x=1$.Ans.[A]
Ex. 16 Function $f(x)=\frac{x}{1+|x|}$ is differentiable in the set-
(A) $(-\infty, \infty)$
(B) $(-\infty, 0)$
(C) $(-\infty, 0) \cup(0, \infty)$
(D) $(0, \infty)$

Sol. When $\mathrm{x}<0, \mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1-\mathrm{x}}$

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{(1-x)^{2}} \tag{1}
\end{equation*}
$$

which exists finitely for all $\mathrm{x}<0$
Also when $x>0, f(x)=\frac{1}{1+x}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{(1+\mathrm{x})^{2}}$
which exists finitely for all $\mathrm{x}>0$. Also from (1) and (2) we have
$\left\{\begin{array}{l}\mathrm{f}^{\prime}(0-0)=1 \\ \mathrm{f}^{\prime}(0+0)=1\end{array} \Rightarrow \mathrm{f}^{\prime}(0)=1\right.$
Hence $\mathrm{f}(\mathrm{x})$ is differentiable $\forall \mathrm{x} \in \mathrm{R}$ Ans.[A]

Ex. 17 If $f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x}, x \neq 0 \\ 0,\end{array} \quad x=0\right.$, then
(A) f and f ' are continuous at $\mathrm{x}=0$
(B) f is derivable at $x=0$
(C) f and f ' are derivable at $x=0$
(D) f is derivable at $x=0$ and f^{\prime} is continuous at
$\mathrm{x}=0$
Sol. When $\mathrm{x} \neq 0$

$$
\begin{aligned}
f^{\prime}(x) & =2 x \sin \frac{1}{x}+x^{2} \cos \frac{1}{x} \cdot\left(-\frac{1}{x^{2}}\right) \\
& =2 x \sin \frac{1}{x}-\cos \left(\frac{1}{x}\right)
\end{aligned}
$$

which exists finitely for all $x \neq 0$
and $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin 1 / x}{x}=0$
$\therefore \mathrm{f}$ is also derivable at $\mathrm{x}=0$. Thus
$f^{\prime}(x)= \begin{cases}2 x \sin \frac{1}{x}-\cos \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$
Also $\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0}\left(2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right)$

$$
=2-\lim _{x \rightarrow 0} \cos \frac{1}{x}
$$

But $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exist, so $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist. Hence f ' is not continuous (so not derivable) at $\mathrm{x}=0$.

Ans.[B]

LEVEL-1

Question based on

Continuity of a function at a point

Q. 1 Function $f(x)=\left\{\begin{array}{ll}1+x, & \text { when } x<2 \\ 5-x, & \text { when } x>2\end{array} ; x=2\right.$ is continuous at $\mathrm{x}=2$, if $\mathrm{f}(2)$ equals -
(A) 0
(B) 1
(C) 2
(D) 3
Q. 2 If $f(x)=\left\{\begin{array}{cl}x \cos \frac{1}{x}, & x \neq 0 \\ k & x=0\end{array}\right.$ is continuous at $x=0$, then
(A) $\mathrm{k}>0$
(B) $\mathrm{k}<0$
(C) $\mathrm{k}=0$
(D) $\mathrm{k} \geq 0$
Q. 3 If function $f(x)=\left\{\begin{array}{ll}x^{2}+2, & x>1 \\ 2 x+1, & x=1\end{array}\right.$ is continuous at $\mathrm{x}=1$, then value of $\mathrm{f}(\mathrm{x})$ for $\mathrm{x}<1$ is-
(A) 3
(B) $1-2 x$
(C) $1-4 x$
(D) None of these
Q. 4 Which of the following function is continuous at $\mathrm{x}=0$ -
(A) $f(x)=\left\{\begin{array}{cc}\sin \frac{2 x}{x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(B) $f(x)=\left\{\begin{array}{cc}(1+x)^{1 / x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(C) $f(x)=\left\{\begin{array}{cc}e^{-1 / x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$
(D) None of these
Q. 5 If $f(x)=\left\{\begin{array}{ll}6 \times 5^{x}, & x \leq 0 \\ 2 a+x, & x>0\end{array}\right.$ is continuous at $x=0$, then the value of a is -
(A) 1
(B) 2
(C) 3
(D) None of these
Q. 6 If $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-(a+2) x+a}{x-2} & x \neq 2 \\ 2, & x=2\end{array}\right.$ is continuous at $x=2$, then a is equal to-
(A) 0
(B) 1
(C) -1
(D) 2
Q. 7 If $f(x)=\left\{\begin{array}{ll}\frac{\sin ^{-1} a x}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to-
(A) 0
(B) 1
(C) a
(D) None of these
Q. 8 What is the value of $(\cos x)^{1 / x}$ at $x=0$ so that it becomes continuous at $x=0$ -
(A) 0
(B) 1
(C) -1
(D) e
Q. 9 If $f(x)=\left\{\begin{array}{cl}\frac{k \cos x}{\pi-2 x}, & x \neq \pi / 2 \\ 1, & x=\pi / 2\end{array}\right.$ is a continuous function at $x=\pi / 2$, then the value of k is-
(A) -1
(B) 1
(C) -2
(D) 2
Q. 10 If function $f(x)=\frac{x^{3}-a^{3}}{x-a}$, is continuous at $x=a$, then the value of $f(a)$ is -
(A) 2 a
(B) $2 a^{2}$
(C) 3 a
(D) $3 a^{2}$
Q. 11 If $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to -
(A) 8
(B) 1
(C) -1
(D) None of these
Q. 12 Function $\mathrm{f}(\mathrm{x})=\left(1+\frac{\mathrm{x}}{\mathrm{a}}\right)^{1 / \mathrm{x}}$ is continuous at $x=0$ if $f(0)$ equals-
(A) e^{a}
(B) $\mathrm{e}^{-\mathrm{a}}$
(C) 0
(D) $\mathrm{e}^{1 / a}$
Q. 13 If $f(x)=\frac{1-\cos 7(x-\pi)}{x-\pi},(x \neq \pi)$ is continuous at $x=\pi$, then $\mathrm{f}(\pi)$ equals-
(A) 0
(B) 1
(C) -1
(D) 7
Q. 14 If $f(x)=\left\{\begin{array}{cc}\frac{\tan x}{\sin x}, & x \neq 0 \\ 1, & x=0\end{array}\right.$, then $f(x)$ is -
(A) continuous everywhere
(B) continuous nowhere
(C) continuous at $x=0$
(D) continuous only at $x=0$
Q. 15 If $f(x)=\frac{2 x+\tan x}{x}$ is continuous at $x=0$, then $f(0)$ equals-
(A) 0
(B) 1
(C) 2
(D) 3
Q. 16 If $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x},(x \neq 0)$ is continuous at $x=0$, then the value of $f(0)$ is-
(A) $1 / 6$
(B) $1 / 4$
(C) 2
(D) $1 / 3$
Q. 17 If $f(x)=\left\{\begin{array}{ccc}a^{2}-b & \text { when } & 0 \leq x<1 \\ 2 & \text { when } & x=1 \\ x+1 & \text { when } & 1<x \leq 2\end{array} \quad\right.$ is continuous at $\mathrm{x}=1$, then the most suitable values of a, b are-
(A) $\mathrm{a}=2, \mathrm{~b}=0$
(B) $\mathrm{a}=1, \mathrm{~b}=-1$
(C) $a=4, b=2$
(D) All the above
Q. 18 If $f(x)=\left\{\begin{array}{ccc}|x|, & \text { when } & x<0 \\ x, & \text { when } & 0 \leq x<1 \\ 1, & \text { when } & x>1\end{array}\right.$ then f is -
(A) continuous for every real number x
(B) discontinuous at $\mathrm{x}=0$
(C) discontinuous at $x=1$
(D) discontinuous at $\mathrm{x}=0$ and $\mathrm{x}=1$
Q. 19 If $f(x)=\left\{\begin{array}{cc}\sin (1 / x), & x \neq 0 \\ 0, & x=0\end{array}\right.$, then it is discontinuous at -
(A) $x=0$
(B) All points
(C) No point
(D) None of these
Q. 20 Function $f(x)=x-|x|$ is-
(A) discontinuous at $x=0$
(B) discontinuous at $\mathrm{x}=1$
(C) continuous at all points
(D) discontinuous at all points
Q. 21 Function $f(x)=\tan x$, is discontinuous at-
(A) $x=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) $x=-\pi$
Q. 22 Function $f(x)=[x]$ is discontinuous at-
(A) every real number
(B) every natural number
(C) every integer
(D) No where
Q. 23 Function $f(x)=3 x^{2}-x$ is-
(A) discontinuous at $x=1$
(B) discontinuous at $x=0$
(C) continuous only at $x=0$
(D) continuous at $\mathrm{x}=0$
Q. 24 If $f(x)=\left\{\begin{array}{ccc}x^{2}, & \text { when } & x \leq 0 \\ 1, & \text { when } & 0<x<1, \text { then } f(x) \text { is- } \\ 1 / x, & \text { when } & x \geq 1\end{array}\right.$
(A) continuous at $x=0$ but not at $x=1$
(B) continuous at $x=1$ but not at $x=0$
(C) continuous at $x=0$ and $x=1$
(D) discontinuous at $\mathrm{x}=0$ and $\mathrm{x}=1$
Q. 25 Function $f(x)=\left\{\begin{array}{ll}-1, & x \in Q \\ 1, & x \notin Q\end{array}\right.$ is-
(A) continuous at $x=0$
(B) continuous at $x=1$
(C) every where continuous
(D) every where discontinuous
Q. 26 If $f(x)=\left\{\begin{array}{cc}-x^{2}, & x \leq 0 \\ 5 x-4, & 0<x \leq 1 \\ 4 x^{2}-3 x, & 1<x<2 \\ 3 x+4, & x \geq 2\end{array}\right.$, then $f(x)$ is-
(A) continuous at $x=0$ but not at $x=1$
(B) continuous at $x=2$ but not at $x=0$
(C) continuous at $x=0,1,2$
(D) discontinuous at $\mathrm{x}=0,1,2$
Q. 27 Function $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-4 x+3}{x^{2}-1}, & x \neq 1 \\ 2, & x=1\end{array}\right.$ is-
(A) continuous at $\mathrm{x}=1$
(B) continuous at $x=-1$
(C) continuous at $x=1$ and $x=-1$
(D) discontinuous at $\mathrm{x}=1$ and $\mathrm{x}=-1$
Q. 28 Let $f(x)=3-|\sin x|$, then $f(x)$ is-
(A) Everywhere continuous
(B) Everywhere discontinuous
(C) Continuous only at $x=0$
(D) Discontinuous only at $x=0$
Q. 29 The function $f(x)=\left\{\begin{array}{cc}x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.$ is a continuous function for-
(A) all real values of x
(B) only $x=2$
(C) all real values of $x \neq 2$
(D) only all integral values of x
Q. 30 If $f(x)=\left\{\begin{array}{cc}x \sin x, & 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x), & \frac{\pi}{2}<x<\pi\end{array}\right.$, then -
(A) $f(x)$ is discontinuous at $x=\pi / 2$
(B) $f(x)$ is continuous at $x=\pi / 2$
(C) $f(x)$ is continuous at $x=0$
(D) None of these
Q. 31 The value of k so that
$f(x)=\left\{\begin{array}{cc}k\left(2 x-x^{2}\right) & \text { when } \quad x<0 \\ \cos x, & \text { when } x \geq 0\end{array}\right.$
continuous at $\mathrm{x}=0$ is-
(A) 1
(B) 2
(C) 4
(D) None of these
Q. 32 If $f(x)=\frac{(a+x)^{2} \sin (a+x)-a^{2} \sin a}{x}, x \neq 0$; then the value of $f(0)$ so that f is continuous at $\mathrm{x}=0$ is-
(A) $a^{2} \cos a+a \sin a$ (B) $a^{2} \cos a+2 a \sin a$
(C) $2 a^{2} \cos a+a \sin a$ (D) None of these
Q. 33 Let $f(x)=|x|+|x-1|$, then-
(A) $f(x)$ is continuous at $x=0$ and $x=1$
(B) $f(x)$ is continuous at $x=0$ but not at $x=1$
(C) $f(x)$ is continuous at $x=1$ but not at $x=0$
(D) None of these
Q. 34 Consider the following statements:
I. A function f is continuous at a point $\mathrm{x}_{0} \in \operatorname{Dom}(\mathrm{f})$ if $\lim _{\mathrm{x} \rightarrow \mathrm{x}_{0}} \mathrm{f}(\mathrm{x})=\mathrm{f}\left(\mathrm{x}_{0}\right)$.
II. f is continuous in $[a, b]$ if f is continuous in (a, b) and $f(a)=f(b)$.
III. A constant function is continuous in an interval.
Out of these correct statements are
(A) I and II
(B) II and III
(C) I and III
(D) All the above
Q. 35 If $f(x)=\left\{\begin{array}{ccc}x+2, & \text { when } & x<1 \\ 4 x-1, & \text { when } & 1 \leq x \leq 3 \\ x^{2}+5, & \text { when } & x>3\end{array}\right.$, then correct statement is-
(A) $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 3} f(x)$
(B) $f(x)$ is continuous at $x=3$
(C) $f(x)$ is continuous at $x=1$
(D) $f(x)$ is continuous at $x=1$ and 3
Q. 36 Let $f(x)$ and $\phi(x)$ be defined by $f(x)=[x]$ and $\phi(x)=\left\{\begin{array}{ll}0, & x \in I \\ x^{2}, & x \in R-I\end{array} \quad[]=\right.$. G.I.F.
(A) $\lim _{x \rightarrow 1} \phi(x)$ exist but ϕ is not continuous at $x=1$
(B) $\lim _{x \rightarrow 1} f(x)$ does not exist and f is continuous at $x=1$
(C) ϕ is continuous for all x
(D) None of these
Q. $37 f(x)=\left\{\begin{array}{ll}\frac{x-4}{|x-4|}+a, & x<4 \\ a+b, & x=4 \\ \frac{x-4}{|x-4|}+b, & x>4\end{array}\right.$ is continuous at $x=4$, if-
(A) $\mathrm{a}=0, \mathrm{~b}=0$
(B) $\mathrm{a}=1, \mathrm{~b}=1$
(C) $a=1, b=-1$
(D) $\mathrm{a}=-1, \mathrm{~b}=1$
Q. 38 The function $f(x)=\frac{\cos x-\sin x}{\cos 2 x}$ is continuous everywhere then $\mathrm{f}(\pi / 4)=$
(A) 1
(B) -1
(C) $\sqrt{2}$
(D) $1 / \sqrt{2}$
Q. 39 If $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}, x \neq \pi / 4$ is every where continuous, then $\mathrm{f}(\pi / 4)$ equals-
(A) 0
(B) 1
(C) -1
(D) $1 / 2$

Question based on

Continuity from left and right

Q. 40 If $f(x)=\left\{\begin{array}{cc}\frac{x}{\mathrm{e}^{1 / x}+1}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then -
(A) $\lim _{x \rightarrow 0^{+}} f(x)=1$
(B) $\lim _{x \rightarrow 0^{-}} f(x)=1$
(C) $f(x)$ is continuous at $x=0$
(D) None of these
Q. 41 If $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$, where $[\mathrm{x}]=$ greatest integer $\leq \mathrm{x}$, then at $\mathrm{x}=1$, f is-
(A) continuous
(B) left continuous
(C) right continuous
(D) None of these

Continuity of a function in an interval
Q. 42 If $f(x)=\left\{\begin{array}{cc}\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x}, & -1 \leq x<0 \\ \frac{2 x+1}{x-2}, & 0 \leq x \leq 1\end{array} \quad\right.$ is continuous in the interval $[-1,1]$ then p equals -
(A) -1
(B) 1
(C) $1 / 2$
(D) $-1 / 2$
Q. 43 If $f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{a}, & 0 \leq x<1 \\ \frac{a,}{}, & 1 \leq x<\sqrt{2} \\ \frac{\left(2 b^{2}-4 b\right)}{x^{2}}, & \sqrt{2} \leq x<\infty\end{array}\right.$ continuous in the interval $[0, \infty)$, then values of a and b are respectively -
(A) $1,-1$
(B) $-1,1+\sqrt{2}$
(C) $-1,1$
(D) None of these
Q. 44 Which of the following function is not continuous in the interval $(0, \pi)$
(A) $x \sin \frac{1}{x}$
(B) $\left\{\begin{array}{cc}1, & 0<x \leq \frac{3 \pi}{4} \\ 2 \sin \left(\frac{2 x}{9}\right), & \frac{3 \pi}{4}<x<\pi\end{array}\right.$
(C) $\tan x$
(D) None of these

Question
 based on

Continuous and discontinuous function

Q. 45 Function $f(x)=|x|$ is-
(A) discontinuous at $\mathrm{x}=0$
(B) discontinuous at $\mathrm{x}=1$
(C) continuous at all point
(D) discontinuous at all points
Q. 46 Point of discontinuity for $\sec x$ is -
(A) $x=-\pi / 2$
(B) $x=3 \pi / 2$
(C) $x=-5 \pi / 2$
(D) All of these
Q. 47 Function $f(x)=\frac{1}{\log |x|}$ is discontinuous at -
(A) one point
(B) two points
(C) three points
(D) infinite number of points
Q. 48 If $f(x)=x-[x]$, then f is discontinuous at -
(A) every natural number
(B) every integer
(C) origin
(D) Nowhere
Q. 49 Which one is the discontinuous function at any point -
(A) $\sin x$
(B) x^{2}
(C) $1 /(1-2 x)$
(D) $1 /\left(1+x^{2}\right)$
Q. 50 The point of discontinuity of $\operatorname{cosec} x$ is -
(A) $x=\pi$
(B) $x=\pi / 2$
(C) $x=3 \pi / 2$
(D) None of these
Q. 51 In the following, continuous function is-
(A) $\tan x$
(B) $\sec x$
(C) $\sin 1 / x$
(D) None of these
Q. 52 In the following, discontinuous function is-
(A) $\sin x$
(B) $\cos x$
(C) $\tan x$
(D) $\sinh x$
Q. 53 Which of the following functions is every where continuous-
(A) $x+|x|$
(B) $x-|x|$
(C) $x|x|$
(D) All above
Q. 54 Which of the following functions is discontinuous at $\mathrm{x}=\mathrm{a}$ -
(A) $\tan (x-a)$
(B) $\sin (x-a)$
(C) $\operatorname{cosec}(x-a)$
(D) $\sec (x-a)$
Q. 55 If $f(x)$ is continuous and $g(x)$ is discontinuous function, then $f(x)+g(x)$ is-
(A) continuous function
(B) discontinuous function
(C) constant function
(D) identity function
Q. 56 Function $f(x)=|x-2|-2|x-4|$ is discontinuous at
(A) $x=2,4$
(B) $x=2$
(C) Nowhere
(D) Except $x=2,4$
Q. 57 Function $f(x)=|\sin x|+|\cos x|+|x|$ is discontinuous at-
(A) $x=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) No where
Q. 58 Function $\mathrm{f}(\mathrm{x})=1+|\sin \mathrm{x}|$ is-
(A) continuous only at $x=0$
(B) discontinuous at all points
(C) continuous at all points
(D) None of these
Q. 59 If function is $f(x)=|x|+|x-1|+|x-2|$, then it is -
(A) discontinuous at $\mathrm{x}=0$
(B) discontinuous at $\mathrm{x}=0,1$
(C) discontinuous at $x=0,1,2$
(D) everywhere continuous
Q. 60 Function $f(x)=\frac{x^{3}-1}{x^{2}-3 x+2}$ is discontinuous at -
(A) $x=1$
(B) $x=2$
(C) $x=1,2$
(D) No where
Q. 61 If $f(x)=\frac{1}{(1-x)}$ and $g(x)=f[f\{f(x)\}]$, then $g(x)$ is discontinuous at -
(A) $x=3$
(B) $x=2$
(C) $x=0$
(D) $x=4$
Q. 62 The function $f(x)=\frac{|3 x-4|}{3 x-4}$ is discontinuous at
(A) $x=4$
(B) $x=3 / 4$
(C) $x=4 / 3$
(D) No where
Q. 63 The function $\mathrm{f}(\mathrm{x})=\left(\frac{\pi}{2}-\mathrm{x}\right)$ tan x is discontinuous at-
(A) $x=\pi$
(B) $x=0$
(C) $x=\frac{\pi}{2}$
(D) None of these
Q. 64 Which of the following function has finite number of points of discontinuity-
(A) $\sin [\pi x]$
(B) $|x| / x$
(C) $\tan x$
(D) $x+[x]$
Q. 65 The points of discontinuity of
$f(x)=\tan \left(\frac{\pi x}{x+1}\right)$ other than $x=-1$ are-
(A) $x=\pi$
(B) $x=0$
(C) $x=\frac{2 m-1}{2 m+1}$
(D) $x=\frac{2 m+1}{1-2 m}, m$ is any integer
Q. 66 In the following continuous function is-
(A) $[\mathrm{x}]$
(B) $x-[x]$
(C) $\sin [x]$
(D) $e^{x}+e^{-x}$
Q. 67 In the following, discontinuous function is-
(A) $\sin ^{2} x+\cos ^{2} x$
(B) $e^{x}+e^{-x}$
(C) $e^{x 2}$
(D) $e^{1 / x}$
Q. 68 If $f(x)$ is continuous function and $g(x)$ is discontinuous function, then correct statement is -
(A) $f(x)+g(x)$ is a continuous function
(B) $f(x)-g(x)$ is a continuous function
(C) $f(x)+g(x)$ is a discontinuous function
(D) $f(x) g(x)$ is a continuous function

Question

 based on
Differentiability of function

Q. 69 Which of the following functions is not differentiable at $\mathrm{x}=0$ -
(A) $x|x|$
(B) x^{3}
(C) e^{-x}
(D) $x+|x|$
Q. 70 Which of the following is differentiable function-
(A) $x^{2} \sin \frac{1}{x}$
(B) $\mathrm{x}|\mathrm{x}|$
(C) $\cosh x$
(D) all above
Q. 71 The function $f(x)=\sin |x|$ is-
(A) continuous for all x
(B) continuous only at certain points
(C) differentiable at all points
(D) None of these
Q. 72 If $f(x)=|x-3|$, then f is-
(A) discontinuous at $x=2$
(B) not differentiable at $x=2$
(C) differentiable at $x=3$
(D) continuous but not differentiable at $\mathrm{x}=3$
Q. 73 If $f(x)=\frac{|x-1|}{x-1}, x \neq 1$, and $f(1)=1$, then the correct statement is-
(A) discontinuous at $\mathrm{x}=1$
(B) continuous at $x=1$
(C) differentiable at $x=1$
(D) discontinuous for $\mathrm{x}>1$
Q. 74 If $f(x)=\left\{\begin{array}{cl}x+1, & x>0 \\ 0, & x=1 \\ 7-3 x, & x<1\end{array}\right.$, then $f^{\prime}(0)$ equals-
(A) 1
(B) 2
(C) 0
(D) -3
Q. 75 The function $f(x)=|x|+|x-1|$ is not differential at -
(A) $x=0,1$
(B) $x=0,-1$
(C) $x=-1,1$
(D) $x=1,2$
Q. 76 If $f(x)=\left\{\begin{array}{cc}e^{1 / x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then which one is correct-
(A) $f(x)$ is differentiable at $x=0$
(B) $f(x)$ is discontinuous at $x=0$
(C) $f(x)$ is continuous no where
(D) None of these
Q. 77 Function [x] is not differentiable at -
(A) every rational number
(B) every integer
(C) origin
(D) every where
Q. 78 If $f(x)=\left\{\begin{array}{cl}|x-3|, & \text { when } x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, & \text { when } x<1\end{array}\right.$, then correct statement is-
(A) f is discontinuous at $\mathrm{x}=1$
(B) f is discontinuous at $x=3$
(C) f is differentiable at $\mathrm{x}=1$
(D) f is differentiable at $\mathrm{x}=3$
Q. 79 Function $f(x)=\frac{|x|}{x}$ is-
(A) continuous every where
(B) differentiable every where
(C) differentiable every where except at $\mathrm{x}=0$
(D) None of these
Q. 80 Let $f(x)=|x-a|+|x-b|$, then-
(A) $f(x)$ is continuous for all $x \in R$
(B) $f(x)$ is differential for $\forall x \in R$
(C) $f(x)$ is continuous except at $x=a$ and b
(D) None of these
Q. 81 Function $f(x)=|x-1|+|x-2|$ is differentiable in $[0,3]$, except at-
(A) $x=0$ and $x=3$
(B) $x=1$
(C) $x=2$
(D) $x=1$ and $x=2$
(C) a^{x}
(D) $\cosh x$
Q. 82 If $f(x)=\left\{\begin{array}{cc}1, & \text { when } x<0 \\ 1+\sin x, & \text { when } 0 \leq x \leq \pi / 2\end{array}\right.$, then at x $=0, \mathrm{f}^{\prime}(\mathrm{x})$ equals-
(A) 1
(B) 0
(C) ∞
(D) Does not exist
Q. 83 If $f(x)=\left\{\begin{array}{cc}\frac{x}{1+e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then the function $f(x)$ is differentiable for -
(A) $x \in R_{+}$
(B) $x \in R$
(C) $x \in R_{0}$
(D) None of these
Q. 84 If $f(x)=\left\{\begin{array}{cc}x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is differentiable at $\mathrm{x}=0$, then-
(A) $\alpha>0$
(B) $\alpha>1$
(C) $\alpha \geq 1$
(D) $\alpha \geq 0$
Q. 85 If $f(x)=\left\{\begin{array}{cc}e^{x}, & x \leq 0 \\ |1-x|, & x>0\end{array}\right.$, then $f(x)$ is-
(A) continuous at $x=0$
(B) differentiable at $x=0$
(C) differentiable at $x=1$
(D) differentiable both at $\mathrm{x}=0$ and 1
Q. 86 The function $f(x)=x-|x|$ is not differentiable at
(A) $x=1$
(B) $x=-1$
(C) $x=0$
(D) Nowhere
Q. 87 Which of the following function is not differentiable at $\mathrm{x}=1$
(A) $\sin ^{-1} x$
(B) $\tan x$
Q. 88 If $f(x)=\left\{\begin{array}{cc}\frac{x-1}{2 x^{2}-7 x+5}, & x \neq 1 \\ -\frac{1}{3} & x=1\end{array}\right.$, then $f^{\prime}(1)$ equals -
(A) $\frac{2}{9}$
(B) $-\frac{2}{9}$
(C) 0
(D) Does not exist
Q. 89 If $f(x)=\left\{\begin{array}{cl}\frac{\sin x^{2}}{x}, & x \neq 0 \\ 0 & x=0\end{array}\right.$, then at $x=0, f(x)$ is
(A) continuous and differentiable
(B) neither continuous nor differentiable
(C) continuous but not differentiable
(D) None of these
Q. 90 Function $f(x)=1+|\sin x|$ is-
(A) continuous no where
(B) differentiable no where
(C) everywhere continuous
(D) None of these
Q. 91 Function $f(x)=\left\{\begin{array}{cc}x^{2}, & x \leq 0 \\ 1, & 0<x \leq 1 \\ 1 / x, & x>1\end{array}\right.$ is-
(A) differentiable at $x=0,1$
(B) differentiable only at $x=0$
(C) differentiable at only $x=1$
(D) Not differentiable at $\mathrm{x}=0,1$

LEVEL- 2

Q. 1 If [.] denotes G.I.F. then, in the following, continuous function is-
(A) $\cos [\mathrm{x}]$
(B) $\sin \pi[x]$
(C) $\sin \frac{\pi}{2}[\mathrm{x}]$
(D) All above
Q. 2 If $f(x)=\frac{1-\cos (1-\cos x)}{x^{4}},(x \neq 0)$ is continuous everywhere, then $f(0)$ equals-
(A) $1 / 8$
(B) $1 / 2$
(C) $1 / 4$
(D) None of these
Q. 3 For function $f(x)=\left\{\begin{array}{cl}\left(1+\frac{4 x}{5}\right)^{1 / x}, & x \neq 0 \\ e^{4 / 5}, & x=0\end{array}\right.$, the correct statement is-
(A) $f(0+0)$ and $f(0-0)$ do not exist
(B) $\mathrm{f}(0+0) \neq \mathrm{f}(0-0)$
(C) $\mathrm{f}(\mathrm{x})$ continuous at $\mathrm{x}=0$
(D) $\lim _{x \rightarrow 0} f(x) \neq f(0)$
Q. 4 If $f(x)= \begin{cases}\frac{\sin (a+1) x+\sin x}{x}, & x<0 \\ \text { c }, & x=0, \text { is } \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x \sqrt{x}}, & x>0\end{cases}$
continuous at $\mathrm{x}=0$, then
(A) $\mathrm{a}=3 / 2, \mathrm{c}=1 / 2, \mathrm{~b}$ is any real number
(B) $a=-3 / 2, c=1 / 2, b$ is $R-\{0\}$
(C) $\mathrm{a}=3 / 2, \mathrm{c}=-1 / 2, \mathrm{~b} \in \mathrm{R}-\{0\}$
(D) None of these
Q. 5 Function $f(x)=4 x^{3}+3 x^{2}+e^{\cos x}+|x-3|+$ $\log \left(a^{x}-1\right)+x^{1 / 3}(a>1)$ is discontinuous at-
(A) $x=0$
(B) $\mathrm{x}=1$
(C) $\mathrm{x}=2$
(D) $\mathrm{x}=\frac{\pi}{2}$
Q. 6 If $f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ is
continuous for all values of x, then $f(0)$ is equal to-
(A) $a \sqrt{a}$
(B) $\sqrt{\mathrm{a}}$
(C) $-\sqrt{a}$
(D) $-\mathrm{a} \sqrt{\mathrm{a}}$
Q. 7 Function $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{\left(\mathrm{b}^{2}-\mathrm{a}^{2}\right)}{2}, & 0 \leq \mathrm{x} \leq \mathrm{a} \\ \frac{\mathrm{b}^{2}}{2}-\frac{\mathrm{x}^{2}}{6}-\frac{\mathrm{a}^{3}}{3 \mathrm{x}}, & \mathrm{a}<\mathrm{x} \leq \mathrm{b}, \text { is } \\ \frac{1}{3}\left(\frac{\mathrm{~b}^{3}-\mathrm{a}^{3}}{\mathrm{x}}\right), & \mathrm{x}>\mathrm{b}\end{cases}$
(A) continue at $\mathrm{x}=\mathrm{a}$
(B) continue at $\mathrm{x}=\mathrm{b}$
(C) discontinue on both $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$
(D) continue at both $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$
Q. 8 The function $f(x)=\left\{\begin{array}{cc}\frac{e^{1 / x}-1}{e^{1 / x}+1}, & x \neq 0 \\ 0, & x=0\end{array}\right.$,
(A) is continuous at $\mathrm{x}=0$
(B) is not continuous at $\mathrm{x}=0$
(C) is continuous at $\mathrm{x}=2$
(D) None of these
Q. 9 If function $\mathrm{f}(\mathrm{x})=\left(\frac{\sin \mathrm{x}}{\sin \alpha}\right)^{1 / x-\alpha}$ where, $\alpha \neq \mathrm{m} \pi$ ($\mathrm{m} \in \mathrm{I}$) is continuous then -
(A) $\mathrm{f}(\alpha)=\mathrm{e}^{\tan \alpha}$
(B) $\mathrm{f}(\alpha)=\mathrm{e}^{\cot \alpha}$
(C) $f(\alpha)=e^{2 \cot \alpha}$
(D) $f(\alpha)=\cot \alpha$
Q. 10 If $f(x)=\left\{\begin{aligned}-2 \sin x, & x \leq-\pi / 2 \\ a \sin x+b, & -\pi / 2<x<\pi / 2, \\ \cos x, & x \geq \pi / 2\end{aligned}\right.$ is a continuous function for every value x , then-
(A) $\mathrm{a}=\mathrm{b}=1$
(B) $\mathrm{a}=\mathrm{b}=-1$
(C) $a=1, b=-1$
(D) $\mathrm{a}=-1, \mathrm{~b}=1$
Q. 11 If function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ then f is-
(A) continuous at $x=0$
(B) continuous at $x=1$
(C) continuous at $x=-1$
(D) everywhere continuous
Q. $12 \mathrm{f}(\mathrm{x})=1+2^{1 / \mathrm{x}}$ is-
(A) continuous everywhere
(B) continuous nowhere
(C) discontinuous at $\mathrm{x}=0$
(D) None of these
Q. 13 Let [.] denotes G.I.F. and $f(x)=[x]+[-x]$ and m is any integer, then correct statement is -
(A) $\lim _{x \rightarrow m} f(x)$ does not exist
(B) $f(x)$ is continuous at $x=m$
(C) $\lim _{x \rightarrow m} f(x)$ exists
(D) None of these
Q. 14 If $\mathrm{f}(\mathrm{x})=(\tan \mathrm{x} \cot \alpha)^{1 /(\mathrm{x}-\alpha)}$ is continuous at $x=\alpha$, then the value of $f(\alpha)$ is -
(A) $\mathrm{e}^{2 \sin 2 \alpha}$
(B) $\mathrm{e}^{2 \operatorname{cosec} 2 \alpha}$
(C) $\mathrm{e}^{\operatorname{cosec} 2 \alpha}$ (D) $\mathrm{e}^{\sin 2 \alpha}$
Q. 15 Let [.] denotes G.I.F. for the function
$f(x)=\frac{\tan (\pi[x-\pi])}{1+[x]^{2}}$ the wrong statement is -
(A) $f(x)$ is discontinuous at $x=0$
(B) $f(x)$ is continuous for all values of x
(C) $f(x)$ is continuous at $x=0$
(D) $f(x)$ is a constant function
Q. 16 The point of discontinuity of the function $f(x)=\frac{1+\cos 5 x}{1-\cos 4 x}$ is-
(A) $x=0$
(B) $x=\pi$
(C) $x=\pi / 2$
(D) All the above
Q. 17 Let $f(x)=\frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}$. The value which should be assigned to f at $\mathrm{x}=0$ so that it is continuous everywhere is-
(A) 1
(B) 2
(C) -2
(D) $1 / 2$
Q. 18 If the function
$f(x)= \begin{cases}\frac{\sin (k+1) x+\sin x}{x}, & \text { when } x<0 \\ 1 / 2, & \text { when } x=0 \text { is } \\ \frac{\left(x+2 x^{2}\right)^{1 / 2}}{2 x^{3 / 2}}, & \text { when } x>0\end{cases}$
continuous at $x=0$, then the value of k is-
(A) $1 / 2$
(B) $-1 / 2$
(C) $-3 / 2$
(D) 1
Q. 19 If $f(x)=\left\{\begin{array}{cl}3, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$ then -
(A) both $f(x)$ and $f(|x|)$ are differentiable at $x=0$
(B) $\mathrm{f}(|\mathrm{x}|)$ is differentiable but $\mathrm{f}(\mathrm{x})$ is not differentiable at $x=0$
(C) $f(x)$ is differentiable but $f(|x|)$ is not differentiable at $x=0$
(D) both $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(|\mathrm{x}|)$ are not differentiable at $x=0$
Q. 20 The number of points in the interval $(0,2)$ where the derivative of the function
$f(x)=|x-1 / 2|+|x-1|+\tan x$ does not exist is-
(A) 1
(B) 2
(C) 3
(D) 4
Q. 21 Function $\mathrm{f}(\mathrm{x})=\sin (\pi[\mathrm{x}])$ is-
(A) differentiable every where
(B) differentiable no where
(C) not differentiable at $x=1$ and -1
(D) None of these
Q. 22 Function $f(x)=\left\{\begin{array}{cl}x \tan ^{-1}(1 / x), & x \neq 0 \\ 0, & x=0\end{array}\right.$ at $x=0$ is-
(A) discontinuous
(B) continuous
(C) differentiable
(D) None of these
Q. 23 Function $f(x)=\frac{\cos x-\sin x}{\sin 4 x}$ is not defined at $x=\frac{\pi}{4}$. The value which should be assigned to
f at $x=\frac{\pi}{4}$, so that it is continuous there, is-
(A) 0
(B) $\frac{1}{2 \sqrt{2}}$
(C) $-\frac{1}{\sqrt{2}}$
(D) None
Q. 24 Let $f(x)=\max \{2 \sin x, 1-\cos x), x \in(0, \pi)$. Then set of points of non-differentiability is -
(A) ϕ
(B) $\{\pi / 2\}$
(C) $\left\{\pi-\cos ^{-1} 3 / 5\right\}$
(D) $\left\{\cos ^{-1} 3 / 5\right\}$
Q. 25 If $f(x)=\left\{\begin{array}{ll}x \frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then correct statement is-
(A) f is continuous at all points except $\mathrm{x}=0$
(B) f is continuous at every point but not differentiable
(C) f is differentiable at every point
(D) f is differentiable only at the origin
Q. 26 Consider the following statements-
(I) If a function is differentiable at some point then it must be continuous at that point
(II) If a function continuous at some point then it is not necessary that it is differentiable at that point.
(III) Differentiability of a function at some point is the necessary and sufficient condition for continuity at that point.
From above, correct statements are-
(A) I, II, III
(B) I, III
(C) I, II
(D) II, III
Q. 27 State which of the following is a false statement -
(A) If $f(x)$ is continuous at $x=a$ then $f(a)=\lim _{x \rightarrow a} f(x)$
(B) If $\lim _{x \rightarrow a} f(x)$ exists, then $f(x)$ is continuous at $\mathrm{x}=\mathrm{a}$
(C) If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=\mathrm{a}$, then it is continuous at $x=a$
(D) If $f(x)$ is continuous at $x=a$, then $\lim _{x \rightarrow a} f(x)$ exists

LEVEL- 3

Q. 1 If the derivative of the function -

$$
f(x)= \begin{cases}a x^{2}+b, & x<-1 \\ b x^{2}+a x+4, & x \geq-1\end{cases}
$$

is everywhere continuous, then
(A) $\mathrm{a}=2, \mathrm{~b}=3$
(B) $\mathrm{a}=3, \mathrm{~b}=2$
(C) $\mathrm{a}=-2, \mathrm{~b}=-3$
(D) $\mathrm{a}=-3, \mathrm{~b}=-2$
Q. 2 The value of $f(0)$, so that the function $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}},(x \neq 0)$ is continuous, is given by -
(A) $2 / 3$
(B) 6
(C) 2
(D) 4
Q. 3 If $f(\mathrm{x})=\left\{\begin{array}{ll}|\mathrm{x}-4|, & \text { for } \mathrm{x} \geq 1 \\ \left(\mathrm{x}^{3} / 2\right)-\mathrm{x}^{2}+3 \mathrm{x}+(1 / 2), & \text { for } \mathrm{x}<1\end{array}\right.$, then
(A) $f(x)$ is continuous at $x=1$ and at $x=4$
(B) $f(x)$ is differentiable at $x=4$
(C) $f(x)$ is continuous and differentiable at $x=1$
(D) $f(x)$ is only continuous at $x=1$
Q. $4 \quad$ Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then -
(A) $f(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ both are continuous at $\mathrm{x}=0$
(B) $f(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ both are differentiable at $\mathrm{x}=0$
(C) $f(\mathrm{x})$ is differentiable but $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$
(D) $f(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})$ both are not differentiable at $\mathrm{x}=0$
Q. 5 Let $f(x)=\left\{\begin{array}{ll}x^{n} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$.Then $f(x) \quad$ is continuous but not differentiable at $\mathrm{x}=0$ if -
(A) $\mathrm{n} \in(0,1]$
(B) $\mathrm{n} \in[0, \infty)$
(C) $\mathrm{n} \in(-\infty, 0)$
(D) $\mathrm{n}=0$
Q. 6 If $f(\mathrm{x})=\mathrm{a}|\sin \mathrm{x}|+\mathrm{be}{ }^{|\mathrm{x}|}+\mathrm{c}|\mathrm{x}|^{3}$ and if $f(\mathrm{x})$ is differentiable at $\mathrm{x}=0$,
then -
(A) $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$
(B) $\mathrm{a}=0, \mathrm{~b}=0 ; \mathrm{c} \in \mathrm{R}$
(C) $b=c=0 ; a \in R$
(D) $\mathrm{c}=0, \mathrm{a}=0 ; \mathrm{b} \in \mathrm{R}$
Q. 7 The set of points where function $f(\mathrm{x})=\sqrt{1-\mathrm{e}^{-\mathrm{x}^{2}}}$ is differentiable is -
(A) $(-\infty, \infty)$
(B) $(-\infty, 0) \cup(0, \infty)$
(C) $(-1, \infty)$
(D) none of these
Q. $8 \quad$ Let $f(\mathrm{x})=\left\{\begin{array}{l}\sin 2 \mathrm{x}, \quad 0<\mathrm{x} \leq \pi / 6 \\ \mathrm{ax}+\mathrm{b}, \quad \pi / 6<\mathrm{x}<1\end{array}\right.$; If $f(\mathrm{x})$ and $f^{\prime}(\mathrm{x})$ are continuous, then -
(A) $\mathrm{a}=1, \mathrm{~b}=\frac{1}{\sqrt{2}}+\frac{\pi}{6}$
(B) $\mathrm{a}=\frac{1}{\sqrt{2}}, \mathrm{~b}=\frac{1}{\sqrt{2}}$
(C) $a=1, b=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
(D) none of these
Q. $9 \quad$ Let $f(x)=\lim _{n \rightarrow \infty}(\sin \mathrm{x})^{2 n}$; then f is -
(A) discontinuous at $\mathrm{x}=3 \pi / 2$
(B) discontinuous at $\mathrm{x}=\pi / 2$
(C) discontinuous at $\mathrm{x}=-\pi / 2$
(D) All the above
Q. 10 Let [.] denotes G.I.F. and if function $f(x)=\left(\frac{x}{2}-1\right)$ then in the interval $[0, \pi]$
(A) $\tan [f(x)]$ is discontinuous but $1 / \mathrm{f}(\mathrm{x})$ is continuous
(B) $\tan [f(x)]$ is continuous but $\frac{1}{f(x)}$ is discontinuous
(C) $\tan [f(x)]$ and $\mathrm{f}^{-1}(\mathrm{x})$ is continuous
(D) $\tan [\mathrm{f}(\mathrm{x})]$ and $1 / \mathrm{f}(\mathrm{x})$ both are discontinuous
Q. 11 The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is equal to -
(A) discontinuous at only one point
(B) discontinuous exactly at two points
(C) discontinuous exactly at three points
(D) none of these
Q. 12 The function $f(x)=\sin ^{-1}(\cos \mathrm{x})$ is -
(A) discontinuous at $x=0$
(B) continuous at $x=0$
(C) differentiable at $\mathrm{x}=0$
(D) none of these
Q. 13 The function $f(\mathrm{x})=\mathrm{e}^{-|\mathrm{xx}|}$ is -
(A) continuous everywhere but not differentiable at $\mathrm{x}=0$
(B) continuous and differentiable everywhere
(C) not continuous at $x=0$
(D) none of these
Q. 14 If $x+4|y|=6 y$, then y as a function of x is -
(A) continuous at $\mathrm{x}=0$ (B) derivable at $\mathrm{x}=0$
(C) $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}$ for all x
(D) none of these
Q. 15 Let $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x})+f(\mathrm{y})$ and $f(\mathrm{x})=\mathrm{x}^{2} \mathrm{~g}(\mathrm{x})$ for all $x, y, \in R$, where $g(x)$ is continuous function. Then $f^{\prime}(x)$ is equal to -
(A) g^{\prime}
(B) $g(x)$
(C) $f(\mathrm{x})$
(D) none of these
Q. 16 Let $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y}, \in \mathrm{R}$, Suppose that $f(3)=3$ and $f^{\prime}(0)=11$ then $f^{\prime}(3)$ is equal to-
(A) 22
(B) 44
(C) 28
(D) none of these

Statement type Questions

All questions are Assertion \& Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option.
(A) Statement-I and Statement-II are true StatementII is the correct explanation of Statement-I
(B) Statement-I Statement-II are true but StatementII is not the correct explanation of Statement-I.
(C) Statement-I is true but Statement-II is false
(D) Statement-I is false but Statement-II is true.

Q. 17 Statement-1 :

$f(x)=\frac{1}{x-[x]}$ is discontinuous for integral values of x
Statement-2 : For integral values of $x, f(x)$ is undefined.

If $f(x)=\frac{\left(e^{k x}-1\right) \sin k x}{4 x^{2}}(x \neq 0)$ and $f(0)=9$ is continuous at $\mathrm{x}=0$ then $\mathrm{k}= \pm 6$.
Statement-2 : For continuous function
$\lim _{x \rightarrow 0} f(x)=f(0)$

Q. 19 Statement I:

$y=\frac{x}{1+|x|}, x \in R, f(x)$ is differentiable
every where.
Statement II :
$f(x)=\frac{x}{1+|x|}, x \in R$ then $f^{\prime}(x)=\left\{\begin{array}{l}\frac{1}{(1+x)^{2}}, x \geq 0 \\ \frac{1}{(1-x)^{2}}, x<0\end{array}\right.$
Q. 20 Statement-1: If $f(x)=\lim _{n \rightarrow \infty}(\sin x)^{2 n}$, then the set of points discontinuities of f is
$\left\{(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{I}\right\}$
Statement-2 : Since $-1<\sin x<1$, as $n \rightarrow \infty$, $(\sin x)^{2 n} \rightarrow 0, \quad \sin x= \pm 1 \Rightarrow \pm(1)^{2 n}$ $\rightarrow 1, \mathrm{n} \rightarrow \infty$

Q. 21 Statement I :

$f(x)=|x-2|$ is differentiable at $x=2$.
Statement II :
$f(x)=|x-2|$ is continuous at $x=2$.
Q. 22 Statement-1 : The function
$y=\sin ^{-1}(\cos x)$ is not differentiable at
$\mathrm{x}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$ is particular at $\mathrm{x}=\pi$
Statement-2 : $\frac{d y}{d x}=\frac{-\sin x}{|\sin x|}$ so the function is not differentiable at the points where $\sin x=0$.

Q. 23 Statement-1 :

The function $f(x)=\left|x^{3}\right|$ is differentiable at $x=0$
Statement-2 : at $\mathrm{x}=0, \mathrm{f}^{\prime}(\mathrm{x})=0$
Q. 24 Statement I : $f(x)=\sin x$ and $g(x)=\operatorname{sgn}(x)$ then $f(x) g(x)$ is differentiable at $x=1$.
Statement II : Product of two differentiable function is differentiable function

Q. 18 Statement-1 :

Passage Based Questions

Let $f(x)= \begin{cases}\frac{\mathrm{a}(1-\mathrm{x} \sin \mathrm{x})+\mathrm{b} \cos \mathrm{x}+5}{\mathrm{x}^{2}} & , \mathrm{x}<0 \\ 3 & , \mathrm{x}=0 \\ \left\{1+\left(\frac{\mathrm{cx}+\mathrm{dx}{ }^{3}}{\mathrm{x}^{2}}\right)\right\}^{1 / \mathrm{x}} & , \mathrm{x}>0\end{cases}$
If f is continuous at $\mathrm{x}=0$
On the basis of above information, answer the following questions :-
Q. 25 The value of a is -
(A) -1
(B) $\ln 3$
(C) 0
(D) -4
Q. 26 The value of b is -
(A) -1
(B) $\ln 3$
(C) 0
(D) -4
Q. 27 The value of c is
(A) 2
(B) 3
(C) 0
(D) none of these
Q. 28 The value of e^{d} is -
(A) 0
(B) 1
(C) 2
(D) 3

$>$ Column Matching Questions

Match the entry in Column I with the entry in Column II.
Q. 29 Column-I

Column-II
(A) $f(x)=x^{2} \sin (1 / x), x \neq 0 \quad$ (P) continuous but $f(0)=0$ not derivable
(B) $f(x)=\frac{1}{1-e^{-1 / x}}, x \neq 0$, and $f(0)=0$
(Q) f is differentiable f ' is not continuous
(C) $f(x)=x \sin 1 / x, x \neq 0$ $f(0)=0$
(D) $f(x)=x^{3} \sin 1 / x, x \neq 0$ $f(0)=0$
(S) f^{\prime} is continuous but not derivable

Q. 30 Column I

(A) $f(x)=\left|x^{3}\right|$ is $\quad(P)$ continuous in $(-1,1)$
(B) $f(x)=\sqrt{|x|}$
(C) $f(x)=\left|\sin ^{-1} x\right|$ is
(D) $f(x)=|x|$ is
(Q) differentiable in $(-1,1)$

Column II

(R) differentiable in $(0,1)$
(S) not differentiable atleast at one point in $(-1,1)$

LEVEL- 4

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 If $f(x)=\left\{\begin{array}{cc}x & x \in Q \\ -x & x \notin Q\end{array}\right.$, then f is continuous at-
[AIEEE-2002]
(A) only at zero
(B) only at 0,1
(C) all real numbers
(D) all rational numbers
Q. 2 If for all values of $x \& y ; f(x+y)=f(x) . f(y)$ and $f(5)=2 f^{\prime}(0)=3$, then $f^{\prime}(5)$ is-
[AIEEE- 2002]
(A) 3
(B) 4
(C) 5
(D) 6
Q. 3 If $f(x)=\left\{\begin{array}{ll}x e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then $f(x)$ is
[AIEEE- 2003]
(A) discontinuous everywhere
(B) continuous as well as differentiable for all x
(C) continuous for all x but not differentiable at $\mathrm{x}=0$
(D) neither differentiable nor continuous at $\mathrm{x}=0$
Q. 4 Let $\mathrm{f}(\mathrm{x})=\frac{1-\tan \mathrm{x}}{4 \mathrm{x}-\pi}, \mathrm{x} \neq \frac{\pi}{4}, \mathrm{x} \in\left[0, \frac{\pi}{2}\right]$. If $\mathrm{f}(\mathrm{x})$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is-
[AIEEE- 2004]
(A) 1
(B) $1 / 2$
(C) $-1 / 2$
(D) -1
Q. 5 If f is a real-valued differentiable function satisfying $|f(x)-f(y)| \leq(x-y)^{2}, x, y \in R$ and $f(0)=0$, then $f(1)$ equals-
[AIEEE-2005]
(A) -1
(B) 0
(C) 2
(D) 1
Q. 6 Suppose $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5$, then $f^{\prime}(1)$ equals -
[AIEEE-2005]
(A) 3
(B) 4
(C) 5
(D) 6
Q. 7 The set of points where $f(x)=\frac{x}{1+|x|}$ is differentiable is -
[AIEEE- 2006]
(A) $(-\infty,-1) \cup(-1, \infty)$
(B) $(-\infty, \infty)$
(C) $(0, \infty)$
(D) $(-\infty, 0) \cup(0, \infty)$
Q. 8 The function $\mathrm{f}: \mathrm{R} \backslash\{0\} \rightarrow \mathrm{R}$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $\mathrm{x}=0$ by defining $f(0)$ as -
[AIEEE- 2007]
(A) 2
(B) -1
(C) 0
(D) 1
Q. 9 Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $f(\mathrm{x})=\operatorname{Min}\{\mathrm{x}+1,|\mathrm{x}|+1\}$. Then which of the following is true?
[AIEEE 2007]
(A) $f(\mathrm{x}) \geq 1$ for all $\mathrm{x} \in \mathrm{R}$
(B) $f(x)$ is not differentiable at $x=1$
(C) $f(x)$ is differentiable everywhere
(D) $f(x)$ is not differentiable at $x=0$
Q. $10 \quad$ Let $f(x)=\left\{\begin{array}{cl}(x-1) \text { sin } \frac{1}{x-1}, & \text { if } x \neq 1 \\ 0, & \text { if } x=1\end{array}\right.$

Then which one of the following is true?
[AIEEE 2008]
(A) f is differentiable at $\mathrm{x}=0$ and at $\mathrm{x}=1$
(B) f is differentiable at $\mathrm{x}=0$ but not at $\mathrm{x}=1$
(C) f is differentiable at $\mathrm{x}=1$ but not at $\mathrm{x}=0$
(D) f is neither differentiable at $\mathrm{x}=0$ nor at $\mathrm{x}=1$

Statement Based Question : (Q. 11 to Q.12)
(A) Statement -1 is true, Statement -2 is true;

Statement -2 is a correct explanation for
Statement -1
(B) Statement -1 is true, Statement -2 is true;

Statement -2 is not a correct explanation for
Statement -1
(C) Statement -1 is true, Statement -2 is false.
(D) Statement -1 is false, Statement -2 is ture.
Q. 11 Let $f(x)=x|x|$ and $g(x)=\sin x$.

Statement-1 :
gof is differentiable at $x=0$ and its derivative is continuous at that point.
Statement - 2 :
gof is twice differentiable at $x=0$.
[AIEEE 2009]
Q. 12 Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a continuous function defined by $f(x)=\frac{1}{e^{x}+2 e^{-x}}$
Statement-1: $\mathrm{f}(\mathrm{c})=\frac{1}{3}$, for some $\mathrm{c} \in \mathrm{R}$.
Statement-2 : $0<\mathrm{f}(\mathrm{x}) \leq \frac{1}{2 \sqrt{2}}$, for all $\mathrm{x} \in \mathrm{R}$
[AIEEE 2010]
Q. 13 The value of p and q for which the function
$f(x)= \begin{cases}\frac{\sin (p+1) x \sin x}{x}, & x<0 \\ \frac{q}{x^{3 / 2}}, & x=0 \\ \frac{\sqrt{x+\sqrt{x}}}{x^{3 / 2}} & , \quad x>0\end{cases}$
is continuous for all x in R , are :
[AIEEE 2011]
(A) $\mathrm{p}=\frac{1}{2}, \mathrm{q}=-\frac{3}{2}$
(B) $\mathrm{p}=\frac{5}{2}, \mathrm{q}=\frac{1}{2}$
(C) $\mathrm{p}=-\frac{3}{2}, \mathrm{q}=\frac{1}{2}$
(D) $\mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{3}{2}$

SECTION-B

$$
\text { Q. } 1 \text { If } f(x)=\left\{\begin{array}{l}
\frac{1-\cos 4 x}{x^{2}} \text {, when } x<0 \\
a \quad \text {, when } x=0 \\
\frac{\sqrt{x}}{\sqrt{16+\sqrt{x})}-4} \text {, when } x>0
\end{array}\right.
$$

continuous at $\mathrm{x}=0$, then the value of 'a' will be
[IIT-1990]
(A) 8
(B) -8
(C) 4
(D) None
Q. 2 The following functions are continuous on $(0, \pi)$
[IIT-1991]
(A) $\tan x$
(B) $\left\{\begin{array}{cc}x \sin x ; & 0<x \leq \pi / 2 \\ \frac{\pi}{2} \sin (\pi+x) ; & \frac{\pi}{2}<x<\pi\end{array}\right.$
(C) $\left\{\begin{array}{cc}1, & 0<x \leq \frac{3 \pi}{4} \\ 2 \sin \frac{2}{9} x, & \frac{3 \pi}{4}<x<\pi\end{array}\right.$
(D) None of these
Q. 3 If $f(x)=\left\{\begin{array}{l}x \sin x \text {, when } 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x) \text {, when } \frac{\pi}{2}<x<\pi\end{array}\right.$, then -
[IIT-1991]
(A) $f(x)$ is discontinuous at $x=\frac{\pi}{2}$
(B) $f(x)$ is continuous at $x=\frac{\pi}{2}$
(C) $f(x)$ is continuous at $x=0$
(D) None of these
Q. 4 The function $f(x)=[x] \cos \{(2 x-1) / 2\} \pi$, [] denotes the greatest integer function, is discontinuous at
[IIT-1995]
(A) all x
(B) all integer points
(C) no x
(D) x which is not an integer
Q. 5 Let $\mathrm{f}(\mathrm{x})$ be defined for all $\mathrm{x}>0$ and be continuous. Let $f(x)$ satisfy $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all $x, y \& f(e)=1$. Then-
[IIT Scr.95]
(A) $f(x)$ is bounded
(B) $\mathrm{f}\left(\frac{1}{\mathrm{x}}\right) \rightarrow 0$ as $\mathrm{x} \rightarrow 0$
(C) $\mathrm{xf}(\mathrm{x}) \rightarrow 1$ as $\mathrm{x} \rightarrow 0$
(D) $\mathrm{f}(\mathrm{x})=\log \mathrm{x}$
Q. 6 The function $f(x)=[x]^{2}-\left[x^{2}\right]$ (where $[y]$ is the greatest integer less than or equal to y), is discontinuous at -
[IIT-1999]
(A) All integers
(B) All integers except 0 and 1
(C) All integers except 0
(D) All integers except 1
Q. 7 Indicate the correct alternative:

Let $[x]$ denote the greater integer $\leq x$ and $\mathrm{f}(\mathrm{x})=\left[\tan ^{2} \mathrm{x}\right]$, then
[IIT-1993]
(A) $\lim _{x \rightarrow 0} f(x)$ does not exist
(B) $f(x)$ is continuous at $x=0$
(C) $f(x)$ is not differentiable at $x=0$
(D) $\mathrm{f}^{\prime}(0)=1$
Q. $8 \quad g(x)=x f(x)$, where $f(x)=\left\{\begin{array}{cc}x \sin (1 / x), & x \neq 0 \\ 0 & x=0\end{array}\right.$ at $\mathrm{x}=0$
[IIT-1994]
(A) g is differentiable but g^{\prime} is not continuous
(B) both f and g are differentiable
(C) g is differentiable but g ' is continuous
(D) None of these
Q. $9 \quad$ Let $\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{y}}{2}\right)=\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})}{2}$ for all real x and y and $\mathrm{f}^{\prime}(0)=-1, f(0)=1$, then $\mathrm{f}^{\prime}(2)=$
[IIT-1995]
(A) $1 / 2$
(B) 1
(C) -1
(D) $-1 / 2$
Q. 10 Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of x . Then -
[IIT-1998]
(A) h is not differentiable at two values of x
(B) h is differentiable for all x
(C) $\mathrm{h}^{\prime}(\mathrm{x})=0$, for all $\mathrm{x}>1$
(D) None of these
Q. 11 The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$ is not differentiable at.
[IIT-1999]
(A) -1
(B) 0
(C) 1
(D) 2
Q. 12 Let $f: R \rightarrow R$ is a function which is defined by $\mathrm{f}(\mathrm{x})=\max \left\{\mathrm{x}, \mathrm{x}^{3}\right\}$ set of points on which $\mathrm{f}(\mathrm{x})$ is not differentiable is
[IIT Scr. 2001]
(A) $\{-1,1\}$
(B) $\{-1,0\}$
(C) $\{0,1\}$
(D) $\{-1,0,1\}$
Q. 13 Find left hand derivative at $\mathrm{x}=\mathrm{k}, \mathrm{k} \in \mathrm{I}$.
$\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin (\pi \mathrm{x})$
[IIT Scr. 2001]
(A) $(-1)^{k}(\mathrm{k}-1) \pi$
(B) $(-1)^{\mathrm{k}-1}(\mathrm{k}-1) \pi$
(C) $(-1)^{\mathrm{k}}(\mathrm{k}-1) \mathrm{k} \pi$
(D) $(-1)^{\mathrm{k}-1}(\mathrm{k}-1) \mathrm{k} \pi$
Q. 14 Which of the following functions is differentiable at $\mathrm{x}=0$?
[IIT Scr. 2001]
(A) $\cos (|x|)+|x|$
(B) $\cos (|x|)-|x|$
(C) $\sin (|x|)+|x|$
(D) $\sin (|x|)-|x|$
Q. $15 \quad f(x)=||x|-1|$ is not differentiable at $x=$
[IIT Scr.2005]
(A) $0, \pm 1$
(B) ± 1
(C) 0
(D) 1
Q. 16 Let $\mathrm{g}(\mathrm{x})=\frac{(\mathrm{x}-1)^{\mathrm{n}}}{\log \cos ^{\mathrm{m}}(\mathrm{x}-1)} ; 0<\mathrm{x}<2$, m and n are integers, $m \neq 0, n>0$, and let p be the left hand derivative of $|\mathrm{x}-1|$ at $\mathrm{x}=1$. If $\lim _{x \rightarrow 1^{+}} g(x)=p$, then
[IIT- 2008]
(A) $\mathrm{n}=1, \mathrm{~m}=1$
(B) $\mathrm{n}=1, \mathrm{~m}=-1$
(C) $\mathrm{n}=2, \mathrm{~m}=2$
(D) $\mathrm{n}>2, \mathrm{~m}=\mathrm{n}$
Q. 17 Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function such that
$f(x+y)=f(x)+f(y), \forall x, y \in R$
If $f(x)$ is differentiable at $x=0$, then
[IIT- 2011]
(A) $f(x)$ is differentiable only in a finite interval containing zero
(B) $f(x)$ is continuous $\forall x \in \mathrm{R}$
(C) $f^{\prime}(x)$ is constant $\forall x \in \mathrm{R}$
(D) $f(x)$ is differentiable except at finitely many points
Q. 18 If
$f(x)=\left\{\begin{array}{cc}-x-\frac{\pi}{2}, & x \leq-\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2}<x \leq 0 \\ x-1, & 0<x \leq 1 \\ \ln x, & x>1\end{array}\right.$
[IIT- 2011]
(A) $f(x)$ is continuous at $x=-\frac{\pi}{2}$
(B) $f(x)$ is not differentiable at $x=0$
(C) $f(x)$ is differentiable at $x=1$
(D) $f(x)$ is differentiable at $x=-\frac{3}{2}$

LEVEL-1

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	D	C	A	D	C	A	C	B	D	D	D	D	A	C	D	A	D	C	A	C
Que	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Ans	B	C	D	B	D	B	D	A	A	A	D	B	A	C	C	A	C	D	D	C
Que	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$
Ans.	C	D	C	C	C	D	C	B	C	A	D	C	D	C	B	C	D	C	D	C
Que	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Ans.	C	C	C	B	D	D	D	C	D	D	A	D	A	D	A	B	B	C	C	A
Que	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$	$\mathbf{9 1}$									
Ans.	D	D	C	B	A	C	A	B	A	C	D									

LEVEL-2

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	B	A	C	B	A	C	D	B	B	D	D	C	C	B	A	D	A	C	D	C
Que	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$													
Ans	A	B	B	C	B	C	B													

LEVEL-3

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
Ans.	A	C	A	A	A	B	B	C	D	D	C	B	A	A	D	D	A	A	A	A
Que	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$												
Ans	D	A	A	A	A	D	C	D												

29. $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{S}$
30. $A \rightarrow P, Q, R ; B \rightarrow P, R, S ; C \rightarrow P, R, S ; D \rightarrow P, R, S$

SECTION-A

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Ans.	A	D	C	C	B	C	B	D	C	B	C	A	C

SECTION-B

Que	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
Ans.	A	C	A	C	D	D	B	A	C	A	D	D	A	D	A	C	B, C	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

