SOLVED EXAMPLES

Ex.1	Function $f(x) = \begin{cases} -1, \text{ when } x < -1 \\ -x, \text{ when } -1 \le x \le 1 \end{cases}$ is 1, when $x > 1$
Sol.	continuous - (A) Only at $x = 1$ (B) Only at $x = -1$ (C) At both $x = 1$ and $x = -1$ (D) Neither at $x = 1$ nor at $x = -1$ f(-1-0) = -1, f(-1) = -(-1) = 1 $\Rightarrow f(-1-0) \neq f(-1)$ $\Rightarrow f(x)$ is not continuous at $x = -1$ Further, $f(1) = -1$
	$f(1+0) = 1 \qquad \Rightarrow f(1) \neq f(1+0)$
Ex.2	$\Rightarrow f(\mathbf{x}) \text{ is not continuous at } \mathbf{x} = 1. \qquad \text{Ans.[D]}$ If $f(\mathbf{x}) = \begin{cases} x^k \cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$
Sol.	is continuous at $x = 0$, then - (A) $k < 0$ (B) $k > 0$ (C) $k = 0$ (D) $k \ge 0$ Since $f(x)$ is continuous at $x = 0$ $\therefore \lim_{x \to 0} f(x) = f(0)$
	but $f(0)=0$ (given) $\therefore \lim_{x \to 0} f(x) = \lim_{x \to 0} x^k \cos(1/x)$ $= 0, \text{ if } k > 0. \qquad \text{Ans.[B]}$
Ex.3	If $f(x) = \begin{cases} \frac{1}{2} - x, & 0 < x < \frac{1}{2} \\ 0, & x = 0 \\ \frac{1}{2}, & x = \frac{1}{2} \\ \frac{3}{2} - x, & \frac{1}{2} < x < 1 \\ 1, & x = 1 \end{cases}$
	then wrong statement is -
	(A) $f(x)$ is discontinuous at $x = 0$
Sol.	 (B) f(x) is continuous at x = 1/2 (C) f(x) is discontinuous at x = 1 (D) f(x) is continuous at x = 1/4 Obviously function f(x) is discontinuous at x = 0 and x= 1 because the function is not defined, when x< 0 and x> 1, therefore f(0-0) and f(1+0) do not avist. Again
	do not exist. Again

$$f\left(\frac{1}{2}+0\right) = \lim_{x \to 1/2} \left(\frac{3}{2}-x\right) = 1$$
$$f\left(\frac{1}{2}-0\right) = \lim_{x \to 1/2} \left(\frac{1}{2}-x\right) = 0$$
$$\because f\left(\frac{1}{2}+0\right) \neq f\left(\frac{1}{2}-0\right)$$

function f(x) is discontinuous at $x = \frac{1}{2}$ **Ans.[B]**

Ex.4 If
$$f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2} , & x \neq 2 \\ k, & x = 2 \end{cases}$$
 is -

continuous for all values of x, then the value of k is -

$$(A) 5 (B) 6 (C) 7 (D) 8$$

Sol. ::
$$f(x)$$
 is continuous at $x = 2$
:: $f(2-0) = f(2+0) = f(2) = k$
But $f(2+0)$

$$= \lim_{h \to 0} \frac{(2+h)^3 + (2+h)^2 - 16(2+h) + 20}{(2+h-2)^2}$$

$$= \lim_{h \to 0} \frac{h^3 + 7h^2}{h^2} = 7$$
Ans. [C]

Ex.5 If the function
$$f(x) = \begin{cases} 1, & x \le 2 \\ ax + b, & 2 < x < 4 \\ 7, & x \ge 4 \end{cases}$$

is continuous at x = 2 and 4, then the values of a and b are-

Sol. Since f(x) is continuous at x = 2

$$\therefore f(2) = \lim_{x \to 2^+} f(x)$$

$$\Rightarrow 1 = \lim_{x \to 2^+} (ax+b)$$

$$\therefore 1 = 2a + b \qquad \dots(1)$$
Again f(x) is continuous at x = 4,

$$\therefore \quad f(4) = \lim_{x \to 4^{-}} f(x)$$

$$\Rightarrow 7 = \lim_{x \to 4} (ax+b)$$

$$\therefore 7 = 4a+b \qquad ...(2)$$

Solving (1) and (2), we get a= 3, b = -5.**Ans.[B]**

If $f(x) = \begin{cases} x, \text{ when } x \in Q \\ -x, \text{ when } x \notin Q \end{cases}$, then f(x)Ex.6 is continuous at -(A) All rational numbers (B) Zero only (C) Zero and 1 only (D) No where Sol. Let us first examine continuity at x = 0. f(0) = 0 $(\because 0 \in \mathbf{Q})$ $= f (0-0) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(-h)$ = $\lim \{-h \text{ or } h \text{ according as } -h \in Q \text{ or } -h \notin Q\}$ $h \rightarrow 0$ = 0 $f(0+0) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h)$ $= \lim \{h \text{ or } -h\} = 0$ $\mathbf{h} \rightarrow \mathbf{0}$ f(0) = f(0 - 0) = f(0 + 0) \Rightarrow f(x) is continuous at x = 0. Now let $a \in \mathbf{R}$, $a \neq 0$, then $f(a=0) = \lim_{h \to \infty} f(a=h)$ $= \lim \{(a-h) \text{ or } - (a-h)\}$ $h \rightarrow 0$ = a or -a, which is not unique. \Rightarrow f(a-0) does not exist \Rightarrow f(x) is not continuous at a \in R₀. Hence f(x) is continuous only at x = 0. **Ans.[B]**

Ex.7 f(x) = x - [x] is continuous at -(A) x = 0 (B) x = -1(C) x = 1 (D) x = 1/2

Sol. We know that [x] is discontinuous at every integer. Therefore it is continuous only at x = 1/2, while the function x is continuous at all points x=0, -1, 1, 1/2. Thus the given function is continuous only at x = 1/2. Ans.[D]

Ex.8 If
$$f(x) = \begin{cases} \frac{1 - \sin^3 x}{3 \cos^2 x}, & x < \pi/2 \\ a, & x = \pi/2 \end{cases}$$
 is continuous at $\begin{vmatrix} \frac{b(1 - \sin x)}{(\pi - 2x)^2}, & x > \pi/2 \end{vmatrix}$

 $x = \pi/2$, then value of a and b are-

- (A) 1/2, 1/4 (B) 2,4
- (C) 1/2,4 (D) 1/4,2

IIT JEE PREPRETION

Sol.
$$f\left(\frac{\pi}{2}-0\right) = \lim_{h \to 0} \frac{1-\sin^{-3}\left(\frac{\pi}{2}-h\right)}{3\cos^{-2}\left(\frac{\pi}{2}-h\right)}$$
$$= \lim_{h \to 0} \frac{1-\cos^{-3}h}{3\sin^{-2}h}$$
$$= \lim_{h \to 0} \frac{(1-\cosh)(1+\cosh+\cos^{-2}h)}{3(1-\cosh)(1+\cosh)}$$
$$= 1/2$$
$$f\left(\frac{\pi}{2}+0\right) = \lim_{h \to 0} \frac{b\left[1-\sin\left(\frac{\pi}{2}+h\right)\right]}{\left[\pi-2\left(\frac{\pi}{2}+h\right)\right]}$$
$$= \lim_{h \to 0} \frac{b(1-\cosh)}{4h^2}$$
$$= \lim_{h \to 0} \frac{2b\sin^{-2}h/2}{4h^2} = \frac{b}{8}$$
Now f(x) is continuous at x = $\frac{\pi}{2}$
$$\Rightarrow f\left(\frac{\pi}{2}-0\right) = f\left(\frac{\pi}{2}+0\right) = f\left(\frac{\pi}{2}\right) \Rightarrow \frac{1}{2} = \frac{b}{8} = a$$

1

>

: a = 1/2, b = 4 **Ans.**[C]

Ex.9 If the function

$$f(\mathbf{x}) = \begin{cases} 1 + \sin \frac{\pi}{2} \times \text{ for } -\infty < \mathbf{x} \le 1 \\ a\mathbf{x} + b \text{ for } 1 < \mathbf{x} < 3 \\ 6 \tan \frac{\mathbf{x}\pi}{12} \text{ for } 3 \le \mathbf{x} < 6 \end{cases}$$

is continuous in the interval $(-\infty, 6)$, then the value of a and b are respectively -

Sol. Obviously the function f(x) is continuous at x = 1and 3. Therefore $\lim_{x \to \infty} f(x) = f(1)$

$$\Rightarrow a + b = 2 \qquad \dots(1)$$

and $\lim_{x \to 3^{-}} f(x) = f(3)$
$$\Rightarrow 3a + b = 6 \qquad \dots(2)$$

Solving (1) and (2) , we get a = 2, b = 0.Ans.[C]

$$\begin{aligned} \textbf{Ex.10} \quad \text{If } f(\textbf{x}) &= \begin{cases} \frac{1 - \cos 4x}{x^2}, x < 0\\ a, & x = 0\\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}}, x > 0 \end{cases} \\ \text{then at } \textbf{x} &= 0 - \\ \text{(A) } f(\textbf{x}) \text{ is continuous, when } \textbf{a} &= 0\\ \text{(B) } f(\textbf{x}) \text{ is continuous, when } \textbf{a} &= 8\\ \text{(C) } f(\textbf{x}) \text{ is discontinuous for every value of a} \\ \text{(D) None of these} \end{cases} \\ \textbf{Sol.} \quad f(0-0) &= \lim_{x \to 0} \frac{1 - \cos 4x}{x^2} = \frac{2 \sin^2 2x}{x^2} = 8\\ f(0+0) &= \lim_{x \to 0} \frac{\sqrt{x}}{(\sqrt{16 + \sqrt{x} - 4})} \times \frac{\sqrt{16 + \sqrt{x} + 4}}{\sqrt{16 + \sqrt{x} + 4}} \\ &= \lim_{x \to 0} \frac{\sqrt{x}(\sqrt{16 + \sqrt{x} - 4})}{16 + \sqrt{x} - 16} = 8\\ \therefore \quad f(0+0) &= f(0-0)\\ \therefore \quad f(\textbf{x}) \text{ can be continuous at } \textbf{x} &= 0, \text{ if } \\ f(0) &= \textbf{a} &= 8. \end{cases} \quad \textbf{Ans.[B]} \end{aligned}$$
$$\begin{aligned} \textbf{Ex.11} \quad \text{If } f(\textbf{x}) &= \lim_{x \to 0} \begin{cases} \frac{\sin[x]}{|x|+1}, x > 0}{|x| + 1|}, x < 0\\ \frac{\cos \frac{x}{2|x|}}{|x|}, x < 0\\ \frac{x}{|x|} &= 0 \end{cases} \end{aligned}$$
$$(\text{Where } [\textbf{x}] &= \text{greatest integer } \leq \textbf{x}) \text{ is continuous} \end{cases}$$

(Where [x] = greatest integer $\leq x$) is continuous at x = 0, then k is equal to -

$$\begin{array}{c} (A) \ 0 \\ (C) \ -1 \\ \end{array}$$
 (D) Indetermin

(C)
$$-1$$
 (D) Indeterminate
As given f (0 - 0) = f(0 + 0) = k

Now
$$f(0-0) = \lim_{h \to 0} \frac{\cos \frac{(-h)}{2[-h]}}{[-h]}$$

$$= \lim_{h \to 0} \frac{\cos\left(\frac{-h}{2(-1)}\right)}{-1} = -1$$

f (0 + 0) =
$$\lim_{h \to 0} \frac{\sin[-h]}{[h] + 1} = \lim_{h \to 0} \frac{\sin - 0}{0 + 1} = 0$$

 \therefore f(0 - 0) \neq f(0 + 0), so k is indeterminate.

IIT JEE PREPRETION

Sol.

Ex.12 If
$$f(x) = \begin{cases} (1+|\sin x|)^{a/|\sin x|}, -\pi/6 < x < 0 \\ b, x = 0 \\ e^{\tan 2x/\tan 3x}, 0 < x < \pi/6 \end{cases}$$

is continuous at $x = 0$, then value of a , b are -
(A) 2/3, $e^{2/3}$ (B) 1/3, $e^{1/3}$
(C) 2/3, 1/3 (D) None of these
Sol. $f(0-0) = \lim_{h \to 0} (1+|\sin(-h)|)^{a/|\sin(-h)|} = (1+\sin h)^{a/\sin h} = e^{a}$
 $f(0+0) = \lim_{h \to 0} e^{\frac{\tan 2h}{\tan 3h}} = e^{\frac{\sin (\tan 2h)}{\tan 3h}} = e^{\frac{\sin (\tan 2h)}{\tan 3h}} = e^{\frac{\sin (\tan 2h)}{\tan 3h}}$
 $= e^{\frac{\sin (2 \sec^2 2h)}{3 \sec^2 3h}} = e^{2/3}$
Now $f(x)$ is continuous at $x = 0$
 $\Rightarrow f(0-0) = f(0+0) = f(0)$
 $\Rightarrow e^a = e^{2/3} = b$
 $\therefore a = 2/3, b = e^{2/3}$ Ans.[A]

Ex.13 f(x) = |x| is not differentiable at -(A) x = -1(B) x = 0(C) x = 1(D) None of these Sol. at $\mathbf{x} = 0$: $f'(0{-}0) = \lim_{h \to 0} \frac{\mid 0 - h \mid -0}{-h} = -1$ $f'(0+0) = \lim_{h \to 0} \frac{\mid 0 + h \mid -0}{h} = 1$ Now, since $f'(0-0) \neq f'(0+0)$ \Rightarrow f(x) is not differentiable at x = 0. **Ans.[B] Ex.14** Function $f(x) = \lim_{h \to 0} \begin{cases} -x, & \text{if } x < 0 \\ x^2, & \text{if } 0 \le x \le 1 \\ x^3 - x + 1, & \text{if } x > 1 \end{cases}$ differentiable at -(A) x = 0 but not at x = 1(B) x = 1 but not at x = 0(C) x = 0 and x = 1 both (D) neither x = 0 nor x = 1Sol. Differentiability at x = 0 $R \ [f'(0)] = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ $= \lim_{h \to 0} \frac{(0+h)^2 - 0}{h} = \lim_{h \to 0} h = 0$ $L [f'(0)] = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$ $= \lim_{h \to 0} \frac{-(0-h) - 0}{-h} = -1$:: $R[f'(0)] \neq L[f'(0)]$ \therefore f(x) is not differentiable at x = 0 Differentiability at x = 1

CONTINUITY & DIFFERENTIABILITY

$$R [f'(1)] = \lim_{h \to 0} \frac{f(1+h)^3 - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{(1+h)^3 - (1+h) + 1 - 1}{h}$$

$$= \lim_{h \to 0} \frac{2h + 3h^2 + h^3}{h} = 2$$

$$L [f'(1)] = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h) - 1}{-h}$$

$$= \lim_{h \to 0} \frac{-2h + h^2}{-h} = 2$$
Thus R [f'(1)] = L f'(1)]
 \therefore function f(x) is differentiable at x = 1 Ans.[B]
Ex.15 If $f(x) = \begin{cases} 3^{x} - 1 \le x \le 1 \\ 4 - x, 1 \le x \le 4 \end{cases}$
then at x = 1, f(x) is -
(A) Continuous but not differentiable
(B) Neither continuous nor differentiable
(B) Neither continuous nor differentiable
(C) Continuous and differentiable
(D) Differentiable but not continuous
Sol. Since f(1-0) = \lim_{x \to 1} 3^x = 3
 $f(1+0) = \lim_{x \to 1} (4-x) = 3$
and $f(1) = 3^1 = 3$
 $f(1-0) = f(1+0) = f(1)$
 \therefore f(x) is continuous at x = 1
 $\Rightarrow Again f'(1+0) = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x-1}$
 $= \lim_{x \to 1} \frac{3^{1+h} - 3}{h}$
 $= 3 \log 3$
and f'(1+0) $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x-1}$
 $= \lim_{x \to 1} \frac{3^{1+h} - 3}{x-1}$
 $= 1 \lim_{x \to 1} \frac{4 - x - 3}{x-1} = -1$
 \therefore f'(1+0) \neq f'(1-0)
 \neq f(x) is not differentiable at x = 1.Ans.[A]
Ex.16 Function f(x) = $\frac{x}{1+|x|}$ is differentiable in the set-
(A) $(-\infty, \infty)$ (B) $(-\infty, 0)$
(C) $(-\infty, 0) \cup (0, \infty)$ (D) $(0, \infty)$

IIT JEE PREPRETION

Sol. When x < 0, $f(x) = \frac{x}{1-x}$

$$f'(x) = \frac{1}{(1-x)^2} \qquad ...(1)$$

which exists finitely for all x < 0

Also when
$$x > 0$$
, $f(x) = \frac{1}{1 + x}$
 $\Rightarrow f'(x) = \frac{1}{(1 + x)^2}$...(2)

which exists finitely for all x > 0. Also from (1) and (2) we have

$$\begin{cases} f'(0-0) = 1 \\ f'(0+0) = 1 \end{cases} \implies f'(0) = 1$$

Hence f(x) is differentiable $\forall x \in R$ **Ans.**[A]

Ex.17 If
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then
(A) f and f' are continuous at $x = 0$
(B) f is derivable at $x = 0$
(C) f and f' are derivable at $x = 0$
(D) f is derivable at $x = 0$ and f' is continuous
at
 $x = 0$
Sol. When $x \neq 0$

f'(x) = 2x sin
$$\frac{1}{x} + x^2 \cos \frac{1}{x} \cdot \left(-\frac{1}{x^2}\right)$$

= 2x sin $\frac{1}{x} - \cos \left(\frac{1}{x}\right)$

which exists finitely for all $x \neq 0$ and f'(0) = $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin 1/x}{x} = 0$

$$\therefore$$
 f is also derivable at x = 0. Thus

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Also $\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(2x \sin \frac{1}{x} - \cos \frac{1}{x} \right)$
$$= 2 - \lim_{x \to 0} \cos \frac{1}{x}$$

But $\lim_{x \to 0} \cos \frac{1}{x}$ does not exist, so $\lim_{x \to 0} f'(x)$ does not exist. Hence f' is not continuous (so not derivable) at x = 0. **Ans.[B]**

LEVEL-1

Q.6	If f(x) = $\begin{cases} \frac{x^2 - (a+2)}{x-2} \\ 2, \end{cases}$	$\frac{x+a}{x \neq 2} \text{is continuous}$ $x = 2$
	at $x = 2$, then a is equ	ual to-
	(A) 0 (B) 1	(C) –1 (D) 2
Q.7	If $f(x) = \begin{cases} \frac{\sin^{-1} ax}{x}, \\ k, \end{cases}$	$x \neq 0$ is continuous at $x = 0$
	x = 0, then k is equal	to-
	(A) 0	(B) 1

(C) a (D) None of these

What is the value of $(\cos x)^{1/x}$ at x = 0 so that it Q.8 becomes continuous at x = 0-(A) 0 **(B)** 1 (C) –1 (D) e

Q.9 If
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 1, & x = \pi/2 \end{cases}$$
 is a continuous

function at $x = \pi/2$, then the value of k is-(A) - 1**(B)** 1 (C) - 2(D) 2

If function $f(x) = \frac{x^3 - a^3}{x - a}$, is continuous at Q.10 x = a, then the value of f(a) is -(D) $3a^2$ (B) $2a^2$ (C) 3a(A) 2a

Q.11 If $f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then k is equal to -(A) 8 **(B)** 1 (C) - 1(D) None of these

Function $f(x) = \left(1 + \frac{x}{a}\right)^{1/x}$ is continuous at **Q.12** x = 0 if f(0) equals- $(A) e^{a}$ (B) e^{-a} (D) $e^{1/a}$

(C) 0

- Q.20 Function f(x) = x |x| is-(A) discontinuous at x = 0(B) discontinuous at x = 1(C) continuous at all points (D) discontinuous at all points
- Q.21 Function $f(x) = \tan x$, is discontinuous at-(A) x = 0 (B) $x = \pi/2$ (C) $x = \pi$ (D) $x = -\pi$
- Q.22 Function f(x) = [x] is discontinuous at(A) every real number
 (B) every natural number
 (C) every integer
 (D) No where
- Q.23 Function $f(x) = 3x^2 x$ is-(A) discontinuous at x = 1(B) discontinuous at x = 0(C) continuous only at x = 0(D) continuous at x = 0

Q.24 If
$$f(x) = \begin{cases} x^2, & \text{when } x \le 0 \\ 1, & \text{when } 0 < x < 1 \\ 1/x, & \text{when } x \ge 1 \end{cases}$$

(A) continuous at x = 0 but not at x = 1
(B) continuous at x = 1 but not at x = 0
(C) continuous at x = 0 and x = 1
(D) discontinuous at x = 0 and x = 1

Q.25 Function $f(x) = \begin{cases} -1, & x \in Q \\ 1, & x \notin Q \end{cases}$ is-(A) continuous at x = 0(B) continuous at x = 1

(B) continuous at x = 1

- (C) every where continuous
- (D) every where discontinuous

Q.26 If
$$f(x) = \begin{cases} -x^2, & x \le 0 \\ 5x - 4, & 0 < x \le 1 \\ 4x^2 - 3x, & 1 < x < 2 \\ 3x + 4, & x \ge 2 \end{cases}$$
, then $f(x)$ is-
(A) continuous at $x = 0$ but not at $x = 1$
(B) continuous at $x = 2$ but not at $x = 0$
(C) continuous at $x = 0, 1, 2$
(D) discontinuous at $x = 0, 1, 2$

Q.27 Function $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$ is-(A) continuous at x = 1(B) continuous at x = -1(C) continuous at x = 1 and x = -1(D) discontinuous at x = 1 and x = -1Q.28 Let $f(x) = 3 - |\sin x|$, then f(x) is-(A) Everywhere continuous (B) Everywhere discontinuous (C) Continuous only at x = 0(D) Discontinuous only at x = 0The function $f(x) = \begin{cases} x - 1, & x < 2 \\ 2x - 3, & x \ge 2 \end{cases}$ is a **O.29** continuous function for-(A) all real values of x (B) only x = 2(C) all real values of $x \neq 2$ (D) only all integral values of x If $f(x) = \begin{cases} x \sin x, & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin (\pi + x), & \frac{\pi}{2} < x < \pi \end{cases}$, then -Q.30 (A) f(x) is discontinuous at $x = \pi/2$ (B) f(x) is continuous at $x = \pi/2$ (C) f(x) is continuous at x = 0(D) None of these **Q.31** The value of k so that $f(x) = \begin{cases} k(2x - x^{2}) & \text{when } x < 0\\ \cos x, & \text{when } x \ge 0 \end{cases}$ continuous at x = 0 is-(A) 1 (B) 2 (C) 4 (D) None of these If $f(x) = \frac{(a + x)^2 \sin (a + x) - a^2 \sin a}{x}$, $x \neq 0$; Q.32 then the value of f(0) so that f is continuous at $\mathbf{x} = \mathbf{0}$ is-(A) $a^2 cos a + a sin a$ (B) $a^2 cos a + 2a sin a$ (C) $2a^2 \cos a + a \sin a$ (D) None of these **IIT JEE PREPRETION**

Q.33 Let f(x) = |x| + |x-1|, then-(A) f(x) is continuous at x = 0 and x = 1(B) f(x) is continuous at x = 0 but not at x = 1(C) f(x) is continuous at x = 1 but not at x = 0(D) None of these Consider the following statements: 0.34 I. A function f is continuous at a point $x_0 \in \text{Dom}(f) \text{ if } \lim f(x) = f(x_0).$ II. f is continuous in [a, b] if f is continuous in (a, b) and f(a) = f(b). III. A constant function is continuous in an interval. Out of these correct statements are (A) I and II (B) II and III (C) I and III (D) All the above $\left[x + 2, when \right]$ If $f(x) = \begin{cases} 4x - 1, & \text{when } 1 \le x \le 3 \text{, then correct} \\ x^2 + 5, & \text{when } x > 3 \end{cases}$ Q.35 statement is-(A) $\lim_{x \to 1} f(x) = \lim_{x \to 3} f(x)$ (B) f(x) is continuous at x = 3(C) f(x) is continuous at x = 1(D) f(x) is continuous at x = 1 and 3 Q.36 Let f(x) and $\phi(x)$ be defined by f(x) = [x] and $\varphi(x) = \begin{cases} 0, & x \in I \\ x^2, & x \in R - I \end{cases} \ [\ . \] = G.I.F.$ (A) $\lim_{x \to \infty} \phi(x)$ exist but ϕ is not continuous at x = 1(B) $\lim_{x \to 0} f(x)$ does not exist and f is continuous at x = 1(C) ϕ is continuous for all x (D) None of these **Q.37** $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4 \\ a+b, & x = 4 \end{cases}$ is continuous at $\frac{x-4}{|x-4|} + b, & x > 4 \end{cases}$ x = 4, if-(A) a = 0, b = 0(B) a = 1, b = 1(C) a = 1, b = -1(D) a = -1, b = 1

The function $f(x) = \frac{\cos x - \sin x}{\cos 2x}$ is continuous Q.38 everywhere then f ($\pi/4$) = (B) –1 (A) 1 (D) $1/\sqrt{2}$ (C) $\sqrt{2}$ If $f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{1 + 2\pi}$, $x \neq \pi/4$ is every where Q.39 continuous, then $f(\pi/4)$ equals-**(B)** 1 (A) 0 (C) - 1(D) 1/2 Question Continuity from left and right based on **Q.40** If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$, then -(A) $\lim f(x) = 1$ $x \rightarrow 0^+$ (B) $\lim f(x) = 1$ (C) f(x) is continuous at x = 0(D) None of these Q.41 If f(x) = [x], where [x] = greatest integer $\leq x$, then at x = 1, f is-(A) continuous (B) left continuous (C) right continuous (D) None of these Question based on Continuity of a function in an interval If $f(x) = \begin{cases} \frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & -1 \le x < 0 \\ \frac{2x + 1}{x}, & 0 \le x \le 1 \end{cases}$ Q.42 is continuous in the interval [-1,1] then p equals -**(B)** 1 (A) - 1(C) 1/2 (D) - 1/2If $f(x) = \begin{cases} \frac{x}{a}, & 0 \le x < 1 \\ a, & 1 \le x < \sqrt{2} \\ \frac{(2b^2 - 4b)}{x^2}, & \sqrt{2} \le x < \infty \end{cases}$ 0.43

continuousintheinterval $[0, \infty)$, then values of a and b are respectively -(A) 1, -1(B) -1, 1+ $\sqrt{2}$ (C) -1, 1(D) None of these

Q.44 Which of the following function is not continuous in the interval $(0, \pi)$

(A)
$$x \sin \frac{1}{x}$$

(B)
$$\begin{cases}
1, & 0 < x \le \frac{3\pi}{4} \\
2 \sin \left(\frac{2x}{9}\right), & \frac{3\pi}{4} < x < \pi
\end{cases}$$
(C) $\tan x$
(D) None of these

Question based on Continuous and discontinuous function

Q.45 Function f(x) = |x| is-(A) discontinuous at x = 0 (B) discontinuous at x = 1 (C) continuous at all point (D) discontinuous at all points
Q.46 Point of discontinuity for sec x is -

(A) $x = -\pi/2$	(B) $x = 3 \pi/2$
(C) $x = -5 \pi / 2$	(D) All of these

- **Q.47** Function $f(x) = \frac{1}{\log |x|}$ is discontinuous at -
 - (A) one point
 - (B) two points
 - (C) three points
 - (D) infinite number of points

Q.48 If f(x) = x - [x], then f is discontinuous at (A) every natural number
(B) every integer
(C) origin
(D) Nowhere

Q.49 Which one is the discontinuous function at any point -(A) sin x (B) x^2

(C) 1/(1-2x) (D) $1/(1+x^2)$

Q.50 The point of discontinuity of cosec x is -(A) $x = \pi$ (B) $x = \pi/2$

(C) $x = 3 \pi / 2$

IIT JEE PREPRETION

(D) None of these

Q.51	e	
	(A) tan x	(B) sec x
	(C) sin 1/x	(D) None of these
Q.52	In the following, disc	continuous function is-
	(A) sin x	(B) $\cos x$
	(C) tan x	(D) sinh x
Q.53	Which of the followhere continuous-	owing functions is every
	(A) $x + x $	(B) $x - x $
	(C) $x x $	(D) All above
Q.54	discontinuous at x =	
	(A) $\tan (x - a)$ (C) $\operatorname{cosec} (x - a)$	
Q.55	If $f(x)$ is continuous function, then $f(x) +$ (A) continuous funct (B) discontinuous fu (C) constant function (D) identity function	ion nction
Q.56	Function $f(x) = x-2 $ at	-2 x-4 is discontinuous
		(B) $x = 2$
	(C) Nowhere	(D) Except $x = 2, 4$
Q.57	Function $f(x) = s $ discontinuous at-	in $x $ + $ \cos x $ + $ x $ is
	(A) $x = 0$	(B) $x = \pi/2$
	(C) $x = \pi$	(D) No where
Q.58	Function $f(x) = 1 + s $	in x is-
	(A) continuous only	at $\mathbf{x} = 0$
	(B) discontinuous at	all points
	(C) continuous at all	points
	(D) None of these	
Q.59		$= \mathbf{x} + \mathbf{x} - 1 + \mathbf{x} - 2 ,$
	then it is -	0
	(A) discontinuous at	
	(B) discontinuous at(C) discontinuous at	
	(D) everywhere cont	

- **Q.60** Function $f(x) = \frac{x^3 1}{x^2 3x + 2}$ is discontinuous at -(A) x = 1 (B) x = 2(C) x = 1, 2 (D) No where
- Q.61 If $f(x) = \frac{1}{(1-x)}$ and $g(x) = f[f{f(x)}]$, then g(x)is discontinuous at -(A) x = 3 (B) x = 2(C) x = 0 (D) x = 4
- Q.62 The function $f(x) = \frac{|3x 4|}{|3x 4|}$ is discontinuous at (A) x = 4 (B) x = 3/4(C) x = 4/3 (D) No where
- **Q.63** The function $f(x) = \left(\frac{\pi}{2} x\right)$ tan x is discontinuous at-

(A)
$$x = \pi$$
 (B) $x = 0$
(C) $x = \frac{\pi}{2}$ (D) None of these

- **Q.64** Which of the following function has finite number of points of discontinuity-(A) sin $[\pi x]$ (B) |x|/x(C) tan x (D) x + [x]

The points of discontinuity of

Q.65

f(x) = tan
$$\left(\frac{\pi x}{x+1}\right)$$
 other than x = -1 are-
(A) x = π (B) x = 0
(C) x = $\frac{2 \text{ m} - 1}{2 \text{ m} + 1}$
(D) x = $\frac{2 \text{ m} + 1}{1 - 2 \text{ m}}$, m is any integer
Q.66 In the following continuous function is-
(A) [x] (B) x - [x]
(C) sin [x] (D) e^x + e^{-x}

Q.67 In the following, discontinuous function is: (A) $\sin^2 x + \cos^2 x$ (B) $e^x + e^{-x}$ (C) e^{x^2} (D) $e^{1/x}$

- Q.68 If f(x) is continuous function and g(x) is discontinuous function, then correct statement is (A) f(x) + g(x) is a continuous function
 (B) f(x) g(x) is a continuous function
 - (C) f(x) + g(x) is a discontinuous function
 - (D) f(x) g(x) is a continuous function

uestion ased on Differentiability of function

- **Q.69** Which of the following functions is not differentiable at x = 0-(A) x |x| (B) x^{3} (C) e^{-x} (D) x + |x|
- Q.70 Which of the following is differentiable function-

(A)
$$x^2 \sin \frac{1}{x}$$
 (B) $x |x|$
(C) $\cosh x$ (D) all above

- Q.71 The function f(x) = sin |x| is(A) continuous for all x
 (B) continuous only at certain points
 (C) differentiable at all points
 (D) None of these
- Q.72 If f(x) = |x-3|, then f is(A) discontinuous at x = 2
 (B) not differentiable at x = 2
 (C) differentiable at x = 3
 (D) continuous but not differentiable at x = 3
- Q.73 If $f(x) = \frac{|x 1|}{|x 1|}$, $x \neq 1$, and f(1) = 1, then the correct statement is-(A) discontinuous at x = 1(B) continuous at x = 1(C) differentiable at x = 1(D) discontinuous for x > 1

Q.74 If
$$f(x) = \begin{cases} x + 1, & x > 0 \\ 0, & x = 1 \\ 7 - 3x, & x < 1 \end{cases}$$

(A) 1 (B) 2 (C) 0 (D) -3

Q.75 The function f(x) = |x| + |x - 1| is not differential at -

(A)
$$x = 0,1$$

(B) $x = 0, -1$
(C) $x = -1, 1$
(D) $x = 1, 2$

- **Q.76** If $f(x) = \begin{cases} e^{1/x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then which one is
 - correct-
 - (A) f(x) is differentiable at x = 0
 - (B) f(x) is discontinuous at x = 0
 - (C) f(x) is continuous no where
 - (D) None of these
- **Q.77** Function [x] is not differentiable at (A) every rational number
 - (B) every integer
 - (C) origin
 - (D) every where

Q.78 If
$$f(x) = \begin{cases} |x-3|, & \text{when } x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{when } x < 1 \end{cases}$$
, then

correct statement is-

- (A) f is discontinuous at x = 1
- (B) f is discontinuous at x = 3
- (C) f is differentiable at x = 1
- (D) f is differentiable at x = 3
- **Q.79** Function $f(x) = \frac{|x|}{x}$ is-(A) continuous every where
 - (B) differentiable every where
 - (C) differentiable every where except at x = 0
 - (D) None of these
- Q.80 Let f(x) = |x-a| + |x-b|, then-(A) f(x) is continuous for all $x \in R$ (B) f(x) is differential for $\forall x \in R$ (C) f(x) is continuous except at x = a and b (D) None of these
- Q.81 Function f(x) = |x 1| + |x 2| is differentiable in [0, 3], except at-(A) x = 0 and x = 3 (B) x = 1
 - (C) x = 2 (D) x = 1 and x = 2

Q.82	If $f(x) = \begin{cases} 1, \\ 1 + \sin x, \end{bmatrix}$	when $x < 0$ then $0 \le x \le \pi / 2$, then at x
	= 0, f'(x) equals-	
	(A) 1	(B) 0
	$(C) \infty$	(D) Does not exist
Q.83	If $f(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, \\ 0, \end{cases}$	$x \neq 0$, then the function $x = 0$
	f(x) is differentiable	for -
	$(A) \ x \in R_{\scriptscriptstyle +}$	(B) $x \in R$
	(C) $x \in R_0$	(D) None of these
Q.84	If $f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, \\ 0, \end{cases}$ x = 0, then-	$x \neq 0$ is differentiable at $x = 0$
	(A) $\alpha > 0$	(B) $\alpha > 1$
	(C) $\alpha \ge 1$	$(D) \alpha \ge 0$
Q.85	If $f(x) = \begin{cases} e^x, & x \leq \\ 1 - x , & x > \end{cases}$	$f_0^{(0)}$, then f(x) is-
	(A) continuous at $x =$	
	(B) differentiable at x	
	(C) differentiable at x	
	(D) differentiable bot	x = 0 and 1
Q.86	The function $f(x) = x$ at	x - x is not differentiable
	(A) $x = 1$	(B) $x = -1$
	(C) $x = 0$	(D) Nowhere

Q.87 Which of the following function is not differentiable at x = 1(A) $\sin^{-1}x$ (B) tan x

(C)
$$a^{A}$$
 (D) $\cosh x$
(C) a^{A} (D) $\cosh x$
(D) $(\cosh x)$
(D) $((\cosh x))$
(D) $(((B) x))$
(D) $(((B) x))$
(D) $(((B) x))$
(D) $(((B) x))$
(D) $((($

Q.89 If
$$f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then at $x = 0$, $f(x)$ is

- (A) continuous and differentiable
- (B) neither continuous nor differentiable
- (C) continuous but not differentiable
- (D) None of these

Q.90 Function $f(x) = 1 + |\sin x|$ is-(A) continuous no where (B) differentiable no where (C) everywhere continuous

(D) None of these

Q.91 Function
$$f(x) = \begin{cases} x^2, & x \le 0 \\ 1, & 0 < x \le 1 \end{cases}$$
 is-

- (A) differentiable at x = 0, 1
- (B) differentiable only at x = 0
- (C) differentiable at only x = 1
- (D) Not differentiable at x = 0, 1

0.1 If [.] denotes G.I.F. then, in the following, Q continuous function is-(A) $\cos[x]$ (B) $\sin \pi[x]$ (C) sin $\frac{\pi}{2}$ [x] to-(D) All above () (If $f(x) = \frac{1 - \cos((1 - \cos x))}{x^4}$, $(x \neq 0)$ is continuous Q.2 everywhere, then f(0) equals-(A) 1/8 **(B)** 1/2 (C) 1/4 (D) None of these Q (, 1/x

Q.3 For function
$$f(x) = \begin{cases} \left(1 + \frac{4x}{5}\right)^{n/4}, & x \neq 0\\ e^{4/5}, & x = 0 \end{cases}$$
, the

correct statement is-

- (A) f(0+0) and f(0-0) do not exist
- (B) $f(0+0) \neq f(0-0)$
- (C) f(x) continuous at x = 0
- (D) $\lim_{x \to 0} f(x) \neq f(0)$

Q.4 If
$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0\\ c & , & x = 0, \text{ is} \\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx\sqrt{x}}, & x > 0 \end{cases}$$

continuous at x = 0, then (A) a = 3/2, c = 1/2, b is any real number (B) a = -3/2, c = 1/2, b is $R - \{0\}$ (C) $a = 3/2, c = -1/2, b \in R - \{0\}$ (D) None of these

Function $f(x) = 4x^3 + 3x^2 + e^{\cos x} + |x-3| +$ Q.5 $\log (a^{x} - 1) + x^{1/3}$ (a >1) is discontinuous at-(A) x = 0(B) x = 1(D) $x = \frac{\pi}{2}$ (C) x = 2

9.6 If
$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
 is

continuous for all values of x, then f(0) is equal

(A)
$$a\sqrt{a}$$
 (B) \sqrt{a}
(C) $-\sqrt{a}$ (D) $-a\sqrt{a}$

.7 Function
$$f(x) = \begin{cases} \frac{(b^2 - a^2)}{2}, & 0 \le x \le a \\ \frac{b^2}{2} - \frac{x^2}{6} - \frac{a^3}{3x}, & a < x \le b \\ \frac{1}{3} \left(\frac{b^3 - a^3}{x} \right), & x > b \end{cases}$$

- (A) continue at x = a(B) continue at x = b(C) discontinue on both x = a, x = b
- (D) continue at both x = a, x = b

Q.8 The function
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

- (A) is continuous at x = 0
- (B) is not continuous at x = 0
- (C) is continuous at x = 2
- (D) None of these

If function $f(x) = \left(\frac{\sin x}{\sin \alpha}\right)^{1/x-\alpha}$ where, $\alpha \neq m\pi$ Q.9

$$\begin{array}{l} (m \in I) \text{ is continuous then } - \\ (A) \ f(\alpha) = e^{\tan \alpha} \qquad (B) \ f(\alpha) = e^{\cot \alpha} \\ (C) \ f(\alpha) = e^{2 \cot \alpha} \qquad (D) \ f(\alpha) = \cot \alpha \end{array}$$

Q.10 If
$$f(x) = \begin{cases} -2 \sin x, & x \le -\pi/2 \\ a \sin x + b, & -\pi/2 < x < \pi/2, & \text{is a} \\ \cos x, & x \ge \pi/2 \end{cases}$$

continuous function for every value x, then-

(A) a = b = 1(B) a = b = -1(C) a = 1, b = -1(D) a = -1, b = 1

α

Q.11 If function $f(x) = x - |x-x^2|, -1 \le x \le 1$ then f is-(A) continuous at x = 0(B) continuous at x = 1(C) continuous at x = -1(D) everywhere continuous

Q.12 $f(x) = 1 + 2^{1/x}$ is-(A) continuous everywhere (B) continuous nowhere

(C) discontinuous at x = 0

- (D) None of these
- **Q.13** Let [.] denotes G.I.F. and f(x) = [x] + [-x] and m is any integer, then correct statement is -
 - (A) $\lim f(x)$ does not exist
 - (B) f(x) is continuous at x = m
 - (C) $\lim_{x \to m} f(x)$ exists (D) None of these
- **Q.14** If $f(x) = (\tan x \cot \alpha)^{1/(x-\alpha)}$ is continuous at $x = \alpha$, then the value of $f(\alpha)$ is -(A) $e^{2 \sin 2\alpha}$ (B) $e^{2 \operatorname{cosec} 2 \alpha}$ (C) $e^{\operatorname{cosec} 2 \alpha}$ (D) $e^{\sin 2 \alpha}$

Q.15 Let [.] denotes G.I.F. for the function $f(x) = \frac{\tan (\pi [x - \pi])}{1 + [x]^2}$ the wrong statement is -

- (A) f(x) is discontinuous at x = 0
- (B) f(x) is continuous for all values of x
- (C) f(x) is continuous at x = 0
- (D) f(x) is a constant function

Q.16 The point of discontinuity of the function

$$f(x) = \frac{1 + \cos 5x}{1 - \cos 4x}$$
 is-
(A) x = 0 (B) x = π
(C) x = $\pi/2$ (D) All the above

Q.17 Let
$$f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$$
. The value

which should be assigned to f at x = 0 so that it is continuous everywhere is-

(A) 1 (B) 2 (C) -2 (D) 1/2

$$f(\mathbf{x}) = \begin{cases} \frac{\sin (k+1) x + \sin x}{x}, & \text{when } x < 0\\ 1/2, & \text{when } x = 0 \text{ is}\\ \frac{(x+2x^2)^{1/2}}{2x^{3/2}}, & \text{when } x > 0 \end{cases}$$

continuous at x = 0, then the value of k is-(A) 1/2 (B) -1/2(C) -3/2 (D) 1

Q.19 If
$$f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$
 then -

- (A) both f(x) and f(| x |) are differentiable at x = 0
- (B) f(|x|) is differentiable but f(x) is not differentiable at x = 0
- (C) f(x) is differentiable but f(|x|) is not differentiable at x = 0
- (D) both f(x) and f(|x|) are not differentiable at x = 0

Q.20 The number of points in the interval (0, 2) where the derivative of the function $f(x) = |x - 1/2| + |x - 1| + \tan x$ does not exist is-(A) 1 (B) 2 (C) 3 (D) 4

Q.21 Function f(x) = sin (π[x]) is(A) differentiable every where
(B) differentiable no where
(C) not differentiable at x = 1 and -1
(D) None of these

Q.22 Function
$$f(x) = \begin{cases} x \tan^{-1}(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 at $x = 0$
is-
(A) discontinuous (B) continuous

- **Q.23** Function $f(x) = \frac{\cos x \sin x}{\sin 4x}$ is not defined at
 - $x = \frac{\pi}{4}$. The value which should be assigned to

f at $x = \frac{\pi}{4}$, so that it is continuous there, is-

(A) 0 (B)
$$\frac{1}{2\sqrt{2}}$$
 (C) $-\frac{1}{\sqrt{2}}$ (D) None

Q.24 Let $f(x) = \max \{2 \sin x, 1 - \cos x\}, x \in (0, \pi)$. Then set of points of non-differentiability is -

(A)
$$\phi$$
 (B) { $\pi/2$ }

(C) {
$$\pi - \cos^{-1} 3/5$$
} (D) { $\cos^{-1} 3/5$ }

Q.25 If
$$f(x) = \begin{cases} x \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then correct

statement is-

- (A) f is continuous at all points except x = 0
- (B) f is continuous at every point but not differentiable
- (C) f is differentiable at every point
- (D) f is differentiable only at the origin
- Q.26 Consider the following statements-
 - (I) If a function is differentiable at some point then it must be continuous at that point
 - (II) If a function continuous at some point then it is not necessary that it is differentiable at that point.
 - (III) Differentiability of a function at some point is the necessary and sufficient condition for continuity at that point.

From above, correct statements are-

(A) I, II, III	(B) I, III
(C) I, II	(D) II, III

- Q.27 State which of the following is a false statement -
 - (A) If f(x) is continuous at x = a then $f(a) = \lim_{x \to a} f(x)$
 - (B) If $\lim_{x \to a} f(x)$ exists, then f(x) is continuous at x = a
 - (C) If f (x) is differentiable at x = a, then it is continuous at x = a
 - (D) If f(x) is continuous at x=a, then $\lim_{x \to a} f(x)$

exists

- Q.1 If the derivative of the function
 - $f(\mathbf{x}) = \begin{cases} ax^{2} + b, & x < -1 \\ bx^{2} + ax + 4, & x \ge -1 \end{cases}$ is everywhere continuous, then
 - (A) a = 2, b = 3 (B) a = 3, b = 2
 - (C) a = -2, b = -3 (D) a = -3, b = -2
- **Q.2** The value of f(0), so that the function
 - $f(x) = \frac{(27 2x)^{1/3} 3}{9 3(243 + 5x)^{1/5}}, (x \neq 0)$ is continuous,

is given by -

$$(A) 2/3 (B) 6 (C) 2 (D) 4$$

- **Q.3** If $f(x) = \begin{cases} |x-4|, & \text{for } x \ge 1 \\ (x^3/2) x^2 + 3x + (1/2), & \text{for } x < 1 \end{cases}$, then
 - (A) f(x) is continuous at x = 1 and at x = 4
 - (B) f(x) is differentiable at x = 4
 - (C) f(x) is continuous and differentiable at x = 1
 - (D) f(x) is only continuous at x = 1
- Q.4 Let f(x) = |x| and $g(x) = |x^3|$, then (A) f(x) & g(x) both are continuous at x = 0(B) f(x) & g(x) both are differentiable at x = 0(C) f(x) is differentiable but g(x) is not differentiable at x = 0
 - (D) f(x) & g(x) both are not differentiable at x = 0

Q.5 Let
$$f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
. Then $f(x)$ is

continuous but not differentiable at x = 0 if -

Q.6 If $f(x) = a |\sin x| + be^{|x|} + c |x|^3$ and if f(x) is differentiable at x = 0, then -(A) a = b = c = 0(B) $a = 0, b = 0; c \in R$ (C) $b = c = 0; a \in R$ (D) $c = 0, a = 0; b \in R$

- Q.7 The set of points where function
 - $f(\mathbf{x}) = \sqrt{1 e^{-\mathbf{x}^2}} \text{ is differentiable is -}$ (A) (-\infty, \infty) (B) (-\infty, 0) \cup (0, \infty) (C) (-1, \infty) (D) none of these

Q.8 Let
$$f(x) = \begin{cases} \sin 2x, & 0 < x \le \pi/6 \\ ax + b, & \pi/6 < x < 1 \end{cases}$$
; If $f(x)$ and

$$f'(\mathbf{x})$$
 are continuous, then \cdot

(A)
$$a = 1, b = \frac{1}{\sqrt{2}} + \frac{\pi}{6}$$

(B) $a = \frac{1}{\sqrt{2}}, b = \frac{1}{\sqrt{2}}$
(C) $a = 1, b = \frac{\sqrt{3}}{2} - \frac{\pi}{6}$

Q.9 Let
$$f(x) = \lim_{n \to \infty} (\sin x)^{2n}$$
; then f is -
(A) discontinuous at $x = 3\pi/2$
(B) discontinuous at $x = \pi/2$
(C) discontinuous at $x = -\pi/2$
(D) All the above

Q.10 Let [.] denotes G.I.F. and if function

$$f(x) = \left(\frac{x}{2} - 1\right)$$
 then in the interval $[0, \pi]$

- (A) tan [f(x)] is discontinuous but 1/f(x) is continuous
- (B) $\tan [f(x)]$ is continuous but $\frac{1}{f(x)}$ is

discontinuous

- (C) $\tan [f(x)]$ and $f^{-1}(x)$ is continuous
- (D) $\tan [f(x)]$ and 1/f(x) both are discontinuous

Q.11 The function
$$f(x) = \frac{4-x^2}{4x-x^3}$$
 is equal to -

- (A) discontinuous at only one point
- (B) discontinuous exactly at two points
- (C) discontinuous exactly at three points
- (D) none of these

Q.12 The function $f(x) = \sin^{-1}(\cos x)$ is -(A) discontinuous at x = 0(B) continuous at x = 0

- (C) differentiable at x = 0
- (D) none of these
- Q.13 The function $f(x) = e^{-|x|}$ is -(A) continuous everywhere but not differentiable at x = 0
 - (B) continuous and differentiable everywhere
 - (C) not continuous at x = 0
 - (D) none of these
- Q.14 If x + 4 |y| = 6 y, then y as a function of x is -(A) continuous at x = 0 (B) derivable at x = 0
 - (C) $\frac{dy}{dx} = \frac{1}{2}$ for all x (D) none of these
- Q.15 Let f(x + y) = f(x) + f(y) and $f(x) = x^2 g(x)$ for all x, y, \in R, where g(x) is continuous function. Then f'(x) is equal to -(A) g' (B) g(x)(C) f(x) (D) none of these
- Q.16 Let f(x + y) = f(x) f(y) for all x, y, $\in \mathbb{R}$, Suppose that f(3) = 3 and f'(0) = 11 then f'(3) is equal to-(A) 22 (B) 44 (C) 28 (D) none of these

Statement type Questions

All questions are Assertion & Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option.

- (A) Statement-I and Statement-II are true Statement-I II is the correct explanation of Statement-I
- (B) Statement-I Statement-II are true but Statement-II is not the correct explanation of Statement-I.
- (C) Statement-I is true but Statement-II is false
- (D) Statement-I is false but Statement-II is true.

Q.17 Statement-1:

 $f(x) = \frac{1}{x - [x]}$ is discontinuous for integral

values of x

Statement-2: For integral values of x, f(x) is undefined.

Q.18 Statement-1:

IIT JEE PREPRETION

If $f(x) = \frac{(e^{kx} - 1)\sin kx}{4x^2}$ ($x \neq 0$) and f(0) = 9 is continuous at x = 0 then $k = \pm 6$. Statement-2 : For continuous function $\lim_{x \to 0} f(x) = f(0)$

Q.19 Statement I:

$$y = \frac{x}{1+|x|}, x \in R, f(x)$$
 is differentiable
every where.

Statement II:

$$f(x) = \frac{x}{1+|x|}, x \in \mathbb{R} \text{ then } f'(x) = \begin{cases} \frac{1}{(1+x)^2}, x \ge 0\\ \frac{1}{(1-x)^2}, x < 0 \end{cases}$$

Q.20 Statement-1 : If $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then the set of points discontinuities of f is $\left\{ (2n+1)\frac{\pi}{2}, n \in I \right\}$

Statement-2 : Since $-1 < \sin x < 1$, as $n \to \infty$, (sin x)²ⁿ $\to 0$, sin x = $\pm 1 \Rightarrow \pm (1)^{2n}$ $\to 1, n \to \infty$

- Q.21 Statement I : f(x) = |x - 2| is differentiable at x = 2. Statement II : f(x) = |x - 2| is continuous at x = 2.
- **Q.22** Statement-1 : The function $y = \sin^{-1}(\cos x)$ is not differentiable at $x = n\pi$, $n \in Z$ is particular at $x = \pi$

Statement-2 : $\frac{dy}{dx} = \frac{-\sin x}{|\sin x|}$ so the function is

not differentiable at the points where $\sin x = 0$.

Q.23 Statement-1:

The function $f(x) = |x^3|$ is differentiable at x = 0Statement-2 : at x = 0, f '(x) = 0

Q.24 Statement I : f(x) = sinx and g(x) = sgn(x)then f(x) g(x) is differentiable at x = 1. Statement II : Product of two differentiable function is differentiable function

Passage Based Questions

Let
$$f(x) = \begin{cases} \frac{a(1 - x \sin x) + b \cos x + 5}{x^2} , x < 0 \\ 3 , x = 0 \\ \left\{ \frac{1 + \left(\frac{cx + dx^3}{x^2}\right)}{x^2} \right\}^{1/x} , x > 0 \end{cases}$$

If f is continuous at x = 0On the basis of above information, answer the following questions : -

- Q.25 The value of *a* is -(A) - 1 (B) ln 3 (C) 0 (D) - 4
- Q.26 The value of b is -(A) -1 (B) ln 3 (C) 0 (D) -4
- Q.27 The value of c is (A) 2 (B) 3 (C) 0 (D) none of these
- **Q.28** The value of e^d is -(A) 0 (B) 1 (C) 2 (D) 3

Column Matching Questions

Match the entry in Column I with the entry in Column II.

Q.29 Column-II Column-II

- (A) $f(x) = x^2 \sin(1/x), x \neq 0$ (P) continuous but f(0) = 0 not derivable
 - (B) $f(x) = \frac{1}{1 e^{-1/x}}, x \neq 0$, (Q) f is differentiable and f(0) = 0 f' is not
 - $\begin{array}{c} \text{continuous}\\ \text{(C) } f(x) = x \sin 1/x, \, x \neq 0 \quad \ \ (R) \ f \text{ is not continuous}\\ f(0) = 0\\ \text{(D) } f(x) = x^3 \sin 1/x, \, x \neq 0 \quad \ \ (S) \ f' \text{ is continuous} \end{array}$
 - f(0) = 0 but not derivable

Q.30 Column I Column II

(A) $f(x) = |x^3|$ is (P) continuous in (-1, 1) (B) $f(x) = \sqrt{|x|}$ (Q) differentiable in (-1, 1) (C) $f(x) = |\sin^{-1}x|$ is (R) differentiable in (0, 1) (D) f(x) = |x| is (S) not differentiable atleast at one point in

(-1, 1)

	(Question asked in previo	ous AIE	CEE and IIT-JEE)
Q.1	SECTION –A If $f(x) = \begin{cases} x & x \in Q \\ -x & x \notin Q \end{cases}$, then f is continuous at- [AIEEE-2002]	Q.6	Suppose $f(x)$ is differentiable at $x = 1$ and $\lim_{h \to 0} \frac{1}{h} f(1+h) = 5$, then $f'(1)$ equals -
	(A) only at zero(B) only at 0, 1(C) all real numbers(D) all rational numbers		[AIEEE-2005] (A) 3 (B) 4 (C) 5 (D) 6
Q.2	If for all values of x & y; $f(x + y) = f(x) . f(y)$ and $f(5) = 2 f'(0) = 3$, then f' (5) is- [AIEEE- 2002] (A) 3 (B) 4 (C) 5 (D) 6	Q.7	The set of points where $f(x) = \frac{x}{1+ x }$ is differentiable is - [AIEEE- 2006] (A) $(-\infty, -1) \cup (-1, \infty)$ (B) $(-\infty, \infty)$ (C) $(0, \infty)$ (D) $(-\infty, 0) \cup (0, \infty)$
Q.3	If $f(x) = \begin{cases} x e^{-(\frac{1}{ x } + \frac{1}{x})}, & x \neq 0 \text{ then } f(x) \text{ is} \\ 0 & , & x = 0 \end{cases}$ [AIEEE- 2003] (A) discontinuous everywhere (B) continuous as well as differentiable for all x (C) continuous for all x but not differentiable at x = 0	Q.8 Q.9	The function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ given by $f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$ can be made continuous at x = 0 by defining $f(0)$ as - [AIEEE- 2007] (A) 2 (B) -1 (C) 0 (D) 1 Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by
Q.4	(D) neither differentiable nor continuous at $x = 0$ Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is- [AIEEE- 2004]	Q.5	Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \text{Min} \{x + 1, x + 1\}$. Then which of the following is true? [AIEEE 2007] (A) $f(x) \ge 1$ for all $x \in \mathbb{R}$ (B) $f(x)$ is not differentiable at $x = 1$ (C) $f(x)$ is differentiable everywhere (D) $f(x)$ is not differentiable at $x = 0$
Q.5	(A) 1 (B) $1/2$ (C) $-1/2$ (D) -1 If f is a real-valued differentiable function satisfying f(x) - f (y) $\leq (x - y)^2$, x, y \in R and f(0) = 0, then f(1) equals- [AIEEE-2005] (A) -1 (B) 0 (C) 2 (D) 1	Q.10	Let $f(x) = \begin{cases} (x - 1) \sin \frac{1}{x - 1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$ Then which one of the following is true? [AIEEE 2008] (A) f is differentiable at x = 0 and at x = 1 (B) f is differentiable at x = 0 but not at x = 1 (C) f is differentiable at x = 1 but not at x = 0 (D) f is neither differentiable at x = 0 nor at x = 1

LEVEL- 4

IIT JEE PREPRETION

Statement Based Question : (Q.11 to Q.12)

- (A) Statement -1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement -1
- (B) Statement -1 is true, Statement -2 is true; Statement -2 is *not* a correct explanation for Statement -1
- (C) Statement -1 is true, Statement -2 is false.
- (D) Statement -1 is false, Statement -2 is ture.

Q.11 Let f(x) = x | x | and $g(x) = \sin x$. Statement - 1 : gof is differentiable at x = 0 and its derivative is continuous at that point. Statement - 2 : gof is twice differentiable at x = 0. [AIEEE 2009]

Q.12 Let $f : R \to R$ be a continuous function defined by $f(x) = \frac{1}{e^{x} + 2e^{-x}}$

Statement-1 : $f(c) = \frac{1}{3}$, for some $c \in R$.

Statement-2 : $0 < f(x) \le \frac{1}{2\sqrt{2}}$, for all $x \in R$

- [AIEEE 2010]
- Q.13 The value of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x\sin x}{x} , & x < 0\\ q , & x = 0\\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x^{3/2}} , & x > 0 \end{cases}$$

is continuous for all x in R, are :

[AIEEE 2011]
(A)
$$p = \frac{1}{2}, q = -\frac{3}{2}$$
 (B) $p = \frac{5}{2}, q = \frac{1}{2}$
(C) $p = -\frac{3}{2}, q = \frac{1}{2}$ (D) $p = \frac{1}{2}, q = \frac{3}{2}$

SECTION-B

Q.1 If
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2}, \text{ when } x < 0\\ a, \text{ when } x = 0 \end{cases}$$
 is
$$\frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}}, \text{ when } x > 0}$$
continuous at $x = 0$, then the value of 'a' will be

continuous at x = 0, then the value of 'a' will be [IIT-1990]

(A) 8	(B) - 8
(C) 4	(D) None

IIT JEE PREPRETION

Q.2 The following functions are continuous on $(0, \pi)$ [IIT-1991] (A) tan x

(B)
$$\begin{cases} x \sin x ; & 0 < x \le \pi/2 \\ \frac{\pi}{2} \sin(\pi + x); & \frac{\pi}{2} < x < \pi \end{cases}$$
(C)
$$\begin{cases} 1, & 0 < x \le \frac{3\pi}{4} \\ 2 \sin \frac{2}{9} x, & \frac{3\pi}{4} < x < \pi \end{cases}$$

(D) None of these

Q.3 If
$$f(x) = \begin{cases} x \sin x, \text{ when } 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin(\pi + x), \text{ when } \frac{\pi}{2} < x < \pi \end{cases}$$
, then -

(A) f(x) is discontinuous at
$$x = \frac{\pi}{2}$$

(B) f(x) is continuous at
$$x = \frac{\pi}{2}$$

(C) f(x) is continuous at $x = 0$

(D) None of these

- Q.4 The function $f(x) = [x] \cos \{(2x 1)/2\}\pi$, [] denotes the greatest integer function, is discontinuous at [IIT-1995] (A) all x (B) all integer points (C) no x
 - (D) x which is not an integer

Q.5 Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y & f(e) = 1. Then-(A) f(x) is bounded (B) $f\left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$

(C) x f (x)
$$\rightarrow$$
 1 as x \rightarrow 0
(D) f(x) = log x

Q.6 The function $f(x) = [x]^2 - [x^2]$ (where [y] is the greatest integer less than or equal to y), is discontinuous at - [IIT-1999] (A) All integers (B) All integers except 0 and 1 (C) All integers except 0

- (D) All integers except 0
- (D) All integers except 1

Q.7 Indicate the correct alternative: Let [x] denote the greater integer $\leq x$ and [IIT-1993] $f(x) = [tan^2x]$, then (A) $\lim f(x)$ does not exist (B) f(x) is continuous at x = 0(C) f(x) is not differentiable at x = 0(D) f'(0) = 1 $g(x) = x f(x), \text{ where } f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0 & x = 0 \end{cases}$ **Q.8** at $\mathbf{x} = \mathbf{0}$ [IIT-1994] (A) g is differentiable but g' is not continuous (B) both f and g are differentiable (C) g is differentiable but g' is continuous (D) None of these Let $f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$ for all real x and y Q.9 and f' (0) = -1, f(0) = 1, then f'(2) = [IIT-1995] (A) 1/2 **(B)** 1 (C) - 1(D) - 1/20.10 Let $h(x) = \min \{x, x^2\}$, for every real number of x. Then -[IIT-1998] (A) h is not differentiable at two values of x (B) h is differentiable for all x (C) h' (x) = 0, for all x > 1(D) None of these 0.11 The function $f(x) = (x^2 - 1) |x^2 - 3x + 2| + \cos(|x|)$ is not differentiable at. [IIT-1999] (A) - 1**(B)** 0 (C) 1 (D) 2 Let $f : R \rightarrow R$ is a function which is defined by 0.12

- Q.12Let $1: K \rightarrow K$ is a function which is defined by
f $(x) = \max \{x, x^3\}$ set of points on which f (x)
is not differentiable is[IIT Scr. 2001]
(A) $\{-1, 1\}$ (A) $\{-1, 1\}$ (B) $\{-1, 0\}$
(C) $\{0, 1\}$ (D) $\{-1, 0, 1\}$

- Q.14 Which of the following functions is differentiable at x = 0? [IIT Scr. 2001] (A) $\cos(|x|) + |x|$ (B) $\cos(|x|) - |x|$ (C) $\sin(|x|) + |x|$ (D) $\sin(|x|) - |x|$
- Q.15 f(x) = ||x| 1| is not differentiable at x =[IIT Scr.2005] (A) 0, ± 1 (B) ± 1 (C) 0 (D) 1
- **Q.16** Let $g(x) = \frac{(x-1)^n}{\log \cos^m (x-1)}$; 0 < x < 2, m and n

are integers, $m \neq 0$, n > 0, and let p be the lefthand derivative of |x - 1| at x = 1.If $\lim_{x \to 1^+} g(x) = p$, then(A) n = 1, m = 1(B) n = 1, m = -1(C) n = 2, m = 2(D) n > 2, m = n

Q.17 Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a function such that

 $f(x + y) = f(x) + f(y), \forall x, y \in R$ If f(x) is differentiable at x = 0, then

[IIT- 2011]

- (A) f(x) is differentiable only in a finite interval containing zero
- (B) f(x) is continuous $\forall x \in \mathbb{R}$
- (C) f'(x) is constant $\forall x \in \mathbf{R}$
- (D) *f*(*x*) is differentiable except at finitely many points

Q.18 If

$$f(\mathbf{x}) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0 \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$

[IIT- 2011]

2

(A) f (x) is continuous at
$$x = -\frac{\pi}{2}$$

(B) f (x) is not differentiable at $x = 0$
(C) f (x) is differentiable at $x = 1$
(D) f (x) is differentiable at $x = -\frac{3}{2}$

ANSWER KEY

LEVEL-1

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	D	С	Α	D	С	Α	С	В	D	D	D	D	Α	С	D	Α	D	С	Α	С
Que	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	В	С	D	В	D	В	D	Α	А	Α	D	В	Α	С	С	Α	С	D	D	С
Que	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	С	D	С	С	С	D	С	В	С	Α	D	С	D	С	В	С	D	С	D	С
Que	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	С	С	С	В	D	D	D	С	D	D	А	D	Α	D	Α	В	В	С	С	Α
Que	81	82	83	84	85	86	87	88	89	90	91									
Ans.	D	D	С	В	Α	С	Α	В	Α	С	D									

LEVEL-2

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	Α	С	В	Α	С	D	В	В	D	D	С	С	В	Α	D	Α	С	D	С
Que	21	22	23	24	25	26	27													
Ans	Α	В	В	С	В	С	В													

LEVEL-3

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	Α	С	Α	А	Α	В	В	С	D	D	С	В	А	А	D	D	А	А	А	А
Que	21	22	23	24	25	26	27	28												
Ans	D	Α	А	А	Α	D	С	D												

29. A \rightarrow Q ; B \rightarrow R ; C \rightarrow P ; D \rightarrow S

30. A \rightarrow P,Q,R ; B \rightarrow P,R,S ; C \rightarrow P,R,S ; D \rightarrow P,R,S

LEVEL-4

SECTION-A

Que	1	2	3	4	5	6	7	8	9	10	11	12	13
Ans.	Α	D	С	С	В	С	В	D	С	В	С	Α	С

SECTION-B

Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ans.	Α	С	Α	С	D	D	В	Α	С	Α	D	D	Α	D	Α	С	B,C	A,B,C,D