- **Ex.1** Which of the following is a function?
  - (A)  $\{(2,1), (2,2), (2,3), (2,4)\}$
  - (B)  $\{(1,4), (2,5), (1,6), (3,9)\}$
  - (C)  $\{(1,2), (3,3), (2,3), (1,4)\}$
  - (D) { (1,2), (2,2), (3,2), (4,2) }
- Sol. We know that for a relation to be function every element of first set should be associated with one and only one element of second set but elements of first set can have same f-image in second set which is given in (D).

#### Ans.[D]

Ex.2 If 
$$f(x) = \frac{x}{x-1} = \frac{1}{y}$$
, then  $f(y)$  equals  
(A)  $x$  (B)  $x - 1$   
(C)  $x + 1$  (D)  $1 - x$   
Sol.  $f(y) = \frac{y}{y-1} = \frac{(x-1)/x}{\frac{x-1}{x}-1} = \frac{x-1}{x-1-x} = 1 - x$ 

Ans.[D]

Ex.3 The domain of 
$$f(x) = \frac{1}{x^3 - x}$$
 is -  
(A) R - {-1,0,1} (B) R  
(C) R - {0,1} (D) None of these

- Sol. Domain =  $\{x; x \in R; x^3 x \neq 0\}$ = R -  $\{-1, 0, 1\}$  Ans.[A]
- **Ex.4** The range of  $f(x) = \cos \frac{\pi [x]}{2}$  is -

(A) 
$$\{0,1\}$$
 (B)  $\{-1,1\}$   
(C)  $\{-1,0,1\}$  (D)  $[-1,1]$ 

**Sol.** [x] is an integer,  $\cos(-x) = \cos x$  and

$$\cos\left(\frac{\pi}{2}\right) = 0, \cos 2\left(\frac{\pi}{2}\right) = -1.$$

$$\cos 0\left(\frac{\pi}{2}\right) = 1, \cos 3\left(\frac{\pi}{2}\right) = 0,....$$
Hence range = {-1,0,1}
Ans.[C]

Ex.5 If 
$$f: R^+ \to R^+$$
,  $f(x) = x^2 + 2$  and  
 $g: R^+ \to R^+$ ,  $g(x) = \sqrt{x+1}$   
then  $(f + g)(x)$  equals -  
(A)  $\sqrt{x^2 + 3}$  (B)  $x + 3$   
(C)  $\sqrt{x^2 + 2} + (x + 1)$  (D)  $x^2 + 2 + \sqrt{(x + 1)}$   
Sol.  $(f + g)(x) = f(x) + g(x)$   
 $= x^2 + 2 + \sqrt{x+1}$  Ans. [D]  
Ex.6 Function  $f(x) = x^{-2} + x^{-3}$  is -

Ex.6 Function 
$$f(x) = x^{-2} + x^{-3}$$
 is -  
(A) a rational function  
(B) an irrational function  
(C) an inverse function  
(D) None of these  
Sol.  $f(x) = \frac{1}{x} + \frac{1}{x} = \frac{x+1}{x}$ 

Sol. 
$$f(x) = \frac{1}{x^2} + \frac{1}{x^3} = \frac{x+1}{x^3}$$
  
= ratio of two polynomials  
 $\therefore$  f(x) is a rational function. Ans.[A]

Ex.7 The period of 
$$|\sin 2x|$$
 is-  
(A)  $\pi/4$  (B)  $\pi/2$  (C)  $\pi$  (D)  $2\pi$   
Sol. Here  $|\sin 2x| = \sqrt{\sin^2 2x}$ 

$$=\sqrt{\frac{(1-\cos 4x)}{2}}$$

Period of cos 4 x is  $\pi/2$ Period of |sin 2x | will be  $\pi/2$ .Ans.[B]

Ex.8 If 
$$f(x) = \frac{x-3}{x+1}$$
, then f [f {f (x)}] equals -  
(A) x (B) 1/x (C) -x (D) -1/x  
Sol. Here f {f(x)} = f  $\left(\frac{x-3}{x+1}\right) = \frac{\left(\frac{x-3}{x+1}\right) - 3}{\left(\frac{x-3}{x+1}\right) + 1} = \frac{x+3}{1-x}$   
 $\therefore f [f {f(x)}] = \frac{x+3}{1-x} - 3}{\frac{4x}{1-x}} = \frac{4x}{1-x}$ 

$$\therefore f[f\{f(x)\}] = \frac{\frac{1-x}{1-x}-3}{\frac{x+3}{1-x}+1} = \frac{4x}{4} = x \text{ Ans. [A]}$$

Ex.9 If f(x) = 2|x - 2| - 3|x - 3|, then the value of f(x) when 2 < x < 3 is -(A) 5 - x (B) x - 5(C) 5x - 13 (D) None of these Sol.  $2 < x < 3 \Rightarrow |x - 2| = x - 2$  |x - 3| = 3 - xf(x) = 2(x - 2) - 3(3 - x) = 5x - 13. Ans. [C]

**Ex.10** Which of the following functions defined from R to R are one-one -(A) f (x) = |x| (B) f (x) = cos x (C) f (x) =  $e^x$  (D) f (x) =  $x^2$  **Sol.**  $x_1 \neq x_2 \Rightarrow e^{x_1} \neq e^{x_2}$   $\Rightarrow f(x_1) \neq f(x_2)$  $\therefore f(x) = e^x$  is one-one. **Ans. [C]** 

**Ex.11** The function 
$$f : R \to R$$
,  $f(x) = x^2$  is -  
(A) one-one but not onto

- (B) onto but not one-one
- (C) one-one onto
- (D) None of these
- **Sol.** ::  $4 \neq -4$ , but f(4) = f(-4) = 16
  - $\therefore$  f is many one function.

Again f (R) =  $R^+ \cup \{0\}$  R, therefore f is into.

Ans. [D]

**Ex.12** If 
$$f: I_0 \rightarrow N$$
,  $f(x) = |x|$ , then f is -



(A) one-one (B) onto

(C) one-one onto (D) none of these

**Sol.** Observing the graph of this function, we find that every line parallel to x-axis meets its graph at more than one point so it is not one-one.

Now range of f = N = Co-domain, so it is onto.

Ans. [B]

**Ex.13** If f: R - {3} R - {1}, f (x) =  $\frac{x-2}{x-3}$  then function f(x) is -(A) Only one-one (B) one-one into (C) Many one onto (D) one-one onto  $\therefore$  f(x) =  $\frac{x-2}{x-3}$ Sol. :.  $f'(x) = \frac{(x-3) \cdot 1 - (x-2) \cdot 1}{(x-3)^2} = \frac{-1}{(x-3)^2}$  $\therefore f'(x) < 0 \forall x \in R - \{3\}$  $\therefore$  f (x) is monotonocally decreasing function  $\Rightarrow$  f is one-one function. onto/ into : Let  $y \in R - \{1\}$  (co-domain) Then one element  $x \in R - \{3\}$  is domain is such that  $f(x) = y \Rightarrow \frac{x-2}{x-3} = y \Rightarrow x-2 = xy-3y$  $\Rightarrow$  x =  $\left(\frac{3y-2}{y-1}\right)$  = x  $\in$  R - {3} : the pre-image of each element of co-domain  $R - \{1\}$  exists in domain  $R - \{3\}$ .  $\Rightarrow$  f is onto. Ans. [D] **Ex.14** Function  $f: N \rightarrow N$ , f(x) = 2x + 3 is -(A) one-one onto (B) one-one into

- (C) many one onto (D) many one into f is one-one because for any  $x_1, x_2 \in N$ Sol.  $x_1 \neq x_2 \Longrightarrow 2x_1 + 3 \neq 2x_2 + 3 \Longrightarrow f(x_1) \neq f(x_2)$ Further  $f^{-1}(x) = \frac{x-3}{2} \notin N$  (domain) when x = 1, 2, 3 etc.  $\therefore$  f is into which shows that f is one- one into. Alter f(x) = 2x + 3 $f'(x) = 2 > 0 \forall x \in N$  $\therefore$  f(x) is increasing function  $\therefore$  f(x) is one-one function & ::  $x = 1, 2, 3, \dots$  $\therefore$  min value of f(x) is 2.1 + 3 = 5  $\therefore$  f(x)  $\neq$  {1, 2, 3, 4}  $\therefore$  Co Domain  $\neq$  Range
  - $\therefore$  f(x) is into function **Ans.** [B]

- **Ex.15** Function  $f : R \to R$ ,  $f(x) = x^3 x$  is -(A) one-one onto (B) one-one into (C) many-one onto (D) many-one into
- Sol. Since  $-1 \neq 1$ , but f (-1) = f(1), therefore f is many-one.

Also let,  $f(x) = x^3 - x = \alpha \Rightarrow x^3 - x - \alpha = 0$ . This is a cubic equation in x which has at least one real root because complex roots always occur in pairs. Therefore each element of co-domain R has pre-image in R. Thus function f in onto .

 $\therefore$  function f is many-one onto.

#### <u>Alter</u>

from graph function is many one- onto function Ans. [C]

- Ex.16 If  $f : R \to R$ , f(x) = 2x 1 and  $g : R \to R$ ,  $g(x) = x^2 + 2$ , then (gof) (x) equals-(A)  $2x^2 - 1$  (B)  $(2x - 1)^2$ (C)  $2x^2 + 3$  (D)  $4x^2 - 4x + 3$ Sol. Here (gof) (x) = g [f(x)] = g (2x - 1) $= (2x - 1)^2 + 2 = 4x^2 - 4x + 3$ . Ans. [D]
- Ex.17 If  $f: R \to R$ ,  $f(x) = 4x^3 + 3$ , then  $f^{-1}(x)$  equals-(A)  $\left(\frac{x-3}{4}\right)^{1/3}$  (B)  $\left(\frac{x^{1/3}-3}{4}\right)$ (C)  $\frac{1}{4}(x-3)^{1/3}$  (D) None of these
- **Sol.** Since f is a bijection, therefore  $f^{-1}$  exists. Now if f-image of x is y, then  $f^{-1}$ :  $R \rightarrow R$  defined as follows :

$$f^{-1}(y) = x \Rightarrow f(x) = y$$
  
But  $f(x) = 4x^3 + 3 \Rightarrow y = 4x^3 + 3 \Rightarrow x = \left(\frac{y-3}{4}\right)^{1/3}$   
Therefore  $f^{-1}(y) = \left(\frac{y-3}{4}\right)^{1/3}$   
 $\Rightarrow f^{-1}(x) = \left(\frac{x-3}{4}\right)^{1/3}$  Ans. [A]  
B  $f(x) = \sqrt{|x-1|}$  and  $g(x) = \sin x$  then (fog ) (x)

equals -

Ex.18

(A)  $\sin \{\sqrt{|x-1|}\}$ (B)  $|\sin x/2 - \cos x/2|$ (C)  $|\sin x - \cos x|$ (D) None of these

Sol. 
$$(fog) (x) = f [g(x)] = f [sin x]$$
  
 $= \sqrt{|sin x - 1|}$   
 $= \sqrt{|1 - sin x|}$   
 $= \sqrt{|sin^2 x/2 + cos^2 x/2 - 2 sin x/2 cos x/2|}$   
 $= \sqrt{|(sin x/2 - cos x/2)^2|}$   
 $= |sin x/2 - cos x/2|$  Ans.[B]

**Ex.19** If  $f : R \to R$ , f(x) = 2x + 1 and  $g : R \to R$ ,  $g(x) = x^3$ , then  $(gof)^{-1}(27)$  equals -(A) -1 (B) 0 (C) 1 (D) 2

Sol. Here 
$$f(x) = 2x + 1 f^{-1}(x) = \frac{x - 1}{2}$$
  
and  $g(x) = x^3 \Rightarrow g^{-1}(x) = x^{1/3}$   
 $\therefore (gof)^{-1}(27) = (f^{-1}og^{-1})(27)$   
 $= f^{-1}[g^{-1}(27)] = f^{-1}[(27)^{1/3}]$   
 $= f^{-1}(3) = \frac{3 - 1}{2} = 1$  Ans.[C]

**Ex.20** The domain of function  $f(x) = \sqrt{2^x - 3^x}$  is -

(A) 
$$(-\infty, 0]$$
 (B) R  
(C)  $[0, \infty)$  (D) No value of x  
Sol. Domain =  $\{x ; 2^x - 3^x \ge 0\} = \{x ; (2/3)^x \ge 1\}$   
=  $x \in (-\infty, 0]$  Ans.[A]

Ex.21 The domain of the function  $f(x) = \sin^{-1} \left( \log_{2} \frac{x^{2}}{2} \right) \text{ is } -$ (A) [-2, 2] - (-1, 1) (B) [-1,2] - {0} (C) [1, 2] (D) [-2,2] - {0} Sol. We know that the domain of  $\sin^{-1}x$  is [-1,1]. So for f(x) to be meaningful , we must have  $-1 \le \log_{2} \frac{x^{2}}{2} \le 1$   $\Rightarrow 2^{-1} \le x^{2}/2 \le 2 \quad x \ne 0$   $\Rightarrow 1 \le x^{2} \le 4, x \ne 0$   $\Rightarrow x \in [-2, -1] \cup [1, 2]$  $\Rightarrow x \in [-2, 2] - (-1, 1)$  Ans.[A]

**Ex.22** The range of function 
$$f(x) = \frac{x^2}{1 + x^2}$$
 is -

- (A)  $R \{1\}$  (B)  $R^+ \cup \{0\}$ (C) [0, 1] (D) None of these
- Sol. Range is containing those real numbers y for which f(x) = y where x is real number.

Now 
$$f(x) = y \Rightarrow \frac{x^2}{1 + x^2} = y$$
  

$$\Rightarrow x = \sqrt{\frac{y}{(1 - y)}} \qquad \dots (1)$$

by (1) clearly  $y \neq 1$ , and for x to be real

$$\frac{y}{1-y} \ge 0 \Rightarrow \qquad y \ge 0 \text{ and } y < 1.$$

$$(\because \text{ If } y = 2 \text{ then } \frac{y}{1-y} = \frac{2}{1-2} = (-2) \text{ and}$$

$$\sqrt{\frac{y}{(1-y)}} = \sqrt{-2} \notin \mathbb{R})$$

$$\therefore \quad 0 \le y < 1$$

$$\therefore \text{ Range of function} = (0 \le y < 1) = [0,1)$$

$$\text{Ans.[D]}$$

$$\text{If } f(x) = \cos(\log x), \text{ then}$$

$$f(x) = f(x) = 1/2 \text{ If } (x/y) + f(xy) \text{ lie equal to}$$

Ex.23 If 
$$f(x) = \cos(\log x)$$
, then  
 $f(x) f(y) - 1/2 [f(x/y) + f(xy)]$  is equal to  
(A) -1 (B) 1/2  
(C) -2 (D) 0

Sol. 
$$\cos (\log x) \cos (\log y)$$
  
 $-\frac{1}{2} [\cos (\log x/y) + \cos (\log xy)]$   
 $= \frac{1}{2} [\cos (\log x + \log y) + \cos (\log x - \log y)]$   
 $-\frac{1}{2} [\cos (\log x - \log y) + \cos (\log x + \log y)]$   
 $= 0$  Ans.[D]

Ex.24 If  $f(x) = \frac{2^{x} + 2^{-x}}{2}$ , then  $f(x + y) \cdot f(x - y)$  is equal to -(A)  $\frac{1}{2} [f(x+y) + f(x-y)]$ (B)  $\frac{1}{2} [f(2x) + f(2y)]$ (C)  $\frac{1}{2} [f(x+y) \cdot f(x-y)]$ (D) None of these

Sol. 
$$f(x + y). f(x - y) = \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2}$$
  
$$= \frac{2^{2x} + 2^{2y} + 2^{-2x} + 2^{-2y}}{4}$$
$$= \frac{1}{2} \left[ \frac{2^{2x} + 2^{-2x}}{2} \cdot \frac{2^{2y} + 2^{-2y}}{2} \right]$$
$$= \frac{1}{2} \left[ f(2x) + f(2y) \right] Ans.[B]$$

Ex.25 If 
$$f : R \to R$$
.  $f (x) = 2x + |x|$ , then  
 $f (3x) - f (-x) - 4x$  equals -  
(A)  $f(x)$  (B) -  $f(x)$   
(C)  $f (-x)$  (D)  $2f(x)$   
Sol.  $f (3x) - f (-x) - 4x$   
 $= 6x + |3x| - \{-2x + |-x|\} - 4x$ 

$$= 6x + |5x| - \{-2x + |-x|\} - 4x$$
  
= 6x + 3 |x| + 2x - |x| - 4x  
= 4x + 2 |x| = 2 f(x). Ans.[D]

Ex.26 If  $g(x) = x^2 + x - 2$  and  $\frac{1}{2}$  (gof) (x) =  $2x^2 - 5x + 2$ , then f(x) is equal to -(A) 2x - 3 (B) 2x + 3(C)  $2x^2 + 3x + 1$  (D)  $2x^2 - 3x - 1$ 

Sol. 
$$g(x) = x^2 + x - 2$$
  
 $\Rightarrow (gof) (x) = g[f(x)] = [f(x)]^2 + f(x) - 2$   
Given,  $\frac{1}{2} (gof) (x) = 2x^2 - 5x + 2$   
 $\therefore \frac{1}{2} [f(x)]^2 + \frac{1}{2} f(x) - 1 = 2x^2 - 5x + 2$   
 $\Rightarrow [f(x)]^2 + f(x) = 4x^2 - 10x + 6$   
 $\Rightarrow f(x) [f(x) + 1] = (2x - 3) [(2x - 3) + 1]$   
 $\Rightarrow f(x) = 2x - 3$  Ans.[A]

**Ex.27** If f(x) = |x| and g(x) = [x], then value of

fog 
$$\left(-\frac{1}{4}\right)$$
 + gof  $\left(-\frac{1}{4}\right)$  is -  
(A) 0 (B) 1  
(C) -1 (D) 1/4

Sol. fog 
$$= f\left[g\left(-\frac{1}{4}\right)\right] f(-1) = 1$$
  
and gof  $\left(-\frac{1}{4}\right) = g\left[f\left(-\frac{1}{4}\right)\right] = g\left(\frac{1}{4}\right) = [1/4] = 0$   
Required value  $= 1 + 0 = 1$ . Ans.[B]

# Question Inequation

Q.1 The inequality  $\frac{2}{x} < 3$  is true, when x belongs to-

(A) 
$$\left[\frac{2}{3},\infty\right]$$
 (B)  $\left(-\infty,\frac{2}{3}\right]$ 

- (C)  $\left(\frac{2}{3},\infty\right) \cup (-\infty,0)$  (D) none of these
- Q.2  $\frac{x+4}{x-3} < 2 \text{ is satisfied when x satisfies-}$ (A)  $(-\infty, 3) \cup (10, \infty)$  (B) (3, 10)(C)  $(-\infty, 3) \cup [10, \infty)$  (D) none of these
- Q.3 Solution of  $\frac{2x-3}{3x-5} \ge 3$  is -(A)  $\left[1, \frac{12}{7}\right]$  (B)  $\left(\frac{5}{3}, \frac{12}{7}\right]$ (C)  $\left(-\infty, \frac{5}{3}\right)$  (D)  $\left[\frac{12}{7}, \infty\right]$
- Q.4 Solution of  $(x 1)^2 (x + 4) < 0$  is-(A)  $(-\infty, 1)$  (B)  $(-\infty, -4)$ (C) (-1, 4) (D) (1, 4)
- Q.5 Solution of (2x + 1) (x 3) (x + 7) < 0 is-(A)  $(-\infty, -7) \cup \left(-\frac{1}{2}, 3\right)$ (B)  $(-\infty, -7) \cup \left(\frac{1}{2}, 3\right)$ (C)  $(-\infty, 7) \cup \left(-\frac{1}{2}, 3\right)$ (D)  $(-\infty, -7) \cup (3, \infty)$
- Q.6 If  $x^2 + 6x 27 > 0$  and  $x^2 3x 4 < 0$ , then-(A) x > 3 (B) x < 4(C) 3 < x < 4 (D)  $x = \frac{7}{2}$

Q.7 If  $x^2 - 1 \le 0$  and  $x^2 - x - 2 \ge 0$ , then x line in the interval/set

| (A)(-1,2) ( | (-1, 1) |
|-------------|---------|
| (C)(1,2) (  | D) {-1} |

### Question based on **Definition of function**

- Q.8 Which of the following relation is a function ?
  (A) {(1,4), (2,6), (1,5), (3,9)}
  (B) {(3,3), (2,1), (1,2), (2,3)}
  (C) {(1,2), (2,2), (3,2), (4,2)}
  (D) {(3,1), (3,2), (3,3), (3,4)}
- Q.9 If x, y  $\in$  R, then which of the following rules is not a function-(A) y = 9 -x<sup>2</sup> (B) y = 2x<sup>2</sup> (C) y =  $\sqrt{x} - |x|$  (D) y = x<sup>2</sup> + 1

#### Question based on Even and Odd function

- Q.10 Which one of the following is not an odd function(A) sin x
  (B) tan x
  (C) tan h x
  (D) None of these
- **Q.11** The function  $f(x) = \frac{\sin^4 x + \cos^4 x}{x + \tan x}$  is -
  - (A) odd
  - (B) Even
  - (C) neither even nor odd
  - (D) odd and periodic
- **Q.12** f (x) = cos log (x +  $\sqrt{1 + x^2}$ ) is
  - (A) even function
  - (B) odd function
  - (C) neither even nor odd
  - (D) constant
- **Q.13** A function whose graph is symmetrical about the y-axis is given by-

(A) 
$$f(x) = \log_e (x + \sqrt{x^2 + 1})$$

- (B) f(x + y) = f(x) + f(y) for all  $x, y \in R$
- (C)  $f(x) = \cos x + \sin x$
- (D) None of these

| (A) $x \frac{a^{x} - 1}{a^{x} + 1}$ (B) $\tan x$<br>(C) $\frac{a^{x} - a^{-x}}{2}$ (D) $\frac{a^{x} + 1}{a^{x} - 1}$<br>Q.15 In the following, odd function is -<br>(A) $\cos x^{2}$ (B) $(e^{x} + 1)/(e^{x} - 1)$<br>(C) $x^{2} -  x $ (D) None of these<br>Q.16 The function $f(x) = x^{2} -  x $ is-<br>(A) an odd function<br>(B) a rational function<br>(C) an even function<br>(D) None of these<br>Periodic function |         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
| (C) $\frac{a^x - a^{-x}}{2}$ (D) $\frac{a^x + 1}{a^x - 1}$<br>Q.15 In the following, odd function is -<br>(A) cos x <sup>2</sup> (B) $(e^x + 1)/(e^x - 1)$<br>(C) $x^2 -  x $ (D) None of these<br>Q.16 The function $f(x) = x^2 -  x $ is-<br>(A) an odd function<br>(B) a rational function<br>(C) an even function<br>(D) None of these<br>Periodic function                                                             |         |  |  |  |  |  |
| Q.15In the following, odd function is -<br>(A) $\cos x^2$ (B) $(e^x + 1)/(e^x - 1)$<br>(C) $x^2 -  x $ (D) None of theseQ.16The function $f(x) = x^2 -  x $ is-<br>(A) an odd function<br>(B) a rational function<br>(C) an even function<br>(D) None of theseQuestion<br>based onPeriodic function                                                                                                                         |         |  |  |  |  |  |
| (A) $\cos x^2$ (B) $(e^x + 1)/(e^x - 1)$<br>(C) $x^2 -  x $ (D) None of these<br>Q.16 The function $f(x) = x^2 -  x $ is-<br>(A) an odd function<br>(B) a rational function<br>(C) an even function<br>(D) None of these<br>Periodic function                                                                                                                                                                               |         |  |  |  |  |  |
| (C) $x^2 -  x $ (D) None of these<br>Q.16 The function $f(x) = x^2 -  x $ is-<br>(A) an odd function<br>(B) a rational function<br>(C) an even function<br>(D) None of these<br>Periodic function                                                                                                                                                                                                                           |         |  |  |  |  |  |
| <b>Q.16</b> The function $f(x) = x^2 -  x $ is-<br>(A) an odd function<br>(B) a rational function<br>(C) an even function<br>(D) None of these<br><b>Periodic function</b>                                                                                                                                                                                                                                                  |         |  |  |  |  |  |
| <ul> <li>(A) an odd function</li> <li>(B) a rational function</li> <li>(C) an even function</li> <li>(D) None of these</li> </ul> Question based on Periodic function                                                                                                                                                                                                                                                       |         |  |  |  |  |  |
| <ul> <li>(B) a rational function</li> <li>(C) an even function</li> <li>(D) None of these</li> <li>Question based on</li> <li>Periodic function</li> </ul>                                                                                                                                                                                                                                                                  |         |  |  |  |  |  |
| (C) an even function<br>(D) None of these<br>Question<br>based on Periodic function                                                                                                                                                                                                                                                                                                                                         |         |  |  |  |  |  |
| (D) None of these           Question         Periodic function                                                                                                                                                                                                                                                                                                                                                              |         |  |  |  |  |  |
| Question<br>based on Periodic function                                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |  |  |  |  |
| <b>Q.17</b> The period of $\sin^4 x + \cos^4 x$ is -                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |
| (A) $\pi$ (B) $\pi/2$                                                                                                                                                                                                                                                                                                                                                                                                       | (B) π/2 |  |  |  |  |  |
| (C) $2\pi$ (D) None of these                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |  |  |
| <b>Q.18</b> The period of function $ \cos 2x $ is -                                                                                                                                                                                                                                                                                                                                                                         |         |  |  |  |  |  |
| (A) $\pi$ (B) $\pi/2$ (C) $4\pi$ (D) $2\pi$                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |
| <b>Q.19</b> The period of function $\sin\left(\frac{\pi x}{2}\right) + \cos\left(\frac{\pi x}{2}\right)$                                                                                                                                                                                                                                                                                                                    | )       |  |  |  |  |  |
| is-                                                                                                                                                                                                                                                                                                                                                                                                                         |         |  |  |  |  |  |
| (A) 4 	(B) 6 	(C) 12 	(D) 24                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |  |  |
| <b>Q.20</b> The period of the function                                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |  |  |  |
| $f(x) = \log \cos 2x + \tan 4x \text{ is-}$                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |
| (A) $\pi/2$ (B) $\pi$                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |  |  |  |  |
| (C) $2\pi$ (D) $2\pi/5$                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |  |  |
| <b>Q.21</b> The period of the function $f(x) = 2 \cos \frac{1}{3} (x - x)^2$                                                                                                                                                                                                                                                                                                                                                | π)      |  |  |  |  |  |
| is -                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |
| (A) $6\pi$ (B) $4\pi$ (C) $2\pi$ (D) $\pi$                                                                                                                                                                                                                                                                                                                                                                                  |         |  |  |  |  |  |
| <b>Q.22</b> In the following which function is not periodic                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |
| (A) $\tan 4x$ (B) $\cos 2\pi x$                                                                                                                                                                                                                                                                                                                                                                                             | >-      |  |  |  |  |  |
| (C) $\cos x^2$ (D) $\cos^2 x$                                                                                                                                                                                                                                                                                                                                                                                               | >-      |  |  |  |  |  |

#### Question based on Domain, Co-domain and **Range of function**

| Q.23 | Domain of the fu | function $f(x) = \frac{1}{\sqrt{x+2}}$ is- |
|------|------------------|--------------------------------------------|
|      | (A) R            | (B) (−2, ∞ )                               |
|      | (C) [2, ∞]       | (D) [0, ∞]                                 |

The domain where function  $f(x) = 2x^2 - 1$  and Q.24 g(x) = 1 - 3x are equal, is-(A)  $\{1/2\}$ (B)  $\{2\}$ (C) {1/2, 2} (D)  $\{1/2, -2\}$ 

- The domain of the function log  $\sqrt{\frac{3-x}{2}}$  is-Q.25  $(A) (3, \infty)$ (B)  $(-\infty, 3)$ (C)(0,3)(D) (-3, 3)
- Domain of the function  $\cos^{-1}(4x 1)$  is-Q.26 (A) (0,1/2) (B) [0,1/2] (C) [1/2,2] (D) None of these
- Domain of the function  $\log |x^2 9|$  is-Q.27 (A) R (B) R - [-3, 3](C)  $R - \{-3, 3\}$ (D) None of these

| The domain of the function- |                                                                               |  |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| $f(x) = \sqrt{x-1} + $      | $\sqrt{6-x}$ is-                                                              |  |  |  |  |  |  |
| (A) (1, 6)                  | (B) [1, 6]                                                                    |  |  |  |  |  |  |
| (C) $[1, \infty)$           | (D) (−∞, 6]                                                                   |  |  |  |  |  |  |
|                             | The domain of the<br>$f(x) = \sqrt{x - 1} + (A) (1, 6)$<br>(C) [1, $\infty$ ) |  |  |  |  |  |  |

- Q.29 The domain of the function
  - $f(x) = \sqrt{(2 2x x^2)}$  is -(A)  $-\sqrt{3} \le x \le \sqrt{3}$  (B)  $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$ (C)  $-2 \le x \le 2$  (D)  $-2 + \sqrt{3} \le x \le -2 - \sqrt{3}$
- Domain of a function  $f(x) = \sin^{-1} 5x$  is-Q.30

(A) 
$$\left(-\frac{1}{5}, \frac{1}{5}\right)$$
 (B)  $\left[-\frac{1}{5}, \frac{1}{5}\right]$   
(C) R (D)  $\left(0, \frac{1}{5}\right)$ 

**Q.31** The range of the function  $f : R \rightarrow R$ ,  $f(x) = \tan^{-1} x$  is-

| (A) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ | (B) $\left  -\frac{\pi}{2}, \frac{\pi}{2} \right $ |
|--------------------------------------------------|----------------------------------------------------|
| (C) R                                            | (D) None of these                                  |

- Q.32 The range of  $f(x) = \sin \frac{\pi}{2} [x]$  is -(A) {-1, 1} (B) {-1, 0, 1} (C) {0, 1} (D) [-1, 1]
- Q.33 Domain and range of  $f(x) = \frac{|x-3|}{|x-3|}$  are respectively-(A) R, [-1, 1] (B) R- {3}, {1, -1} (C) R<sup>+</sup>, R (D) None of these
- Q.35 Range of the function  $f(x) = 9 7 \sin x$  is-(A) (2, 16) (B) [2, 16] (C) [-1, 1] (D) (2, 16]
- **Q.36** For real values of x, range of function

$$y = \frac{1}{2 - \sin 3x} \text{ is } -$$
(A)  $\frac{1}{3} \le y \le 1$ 
(B)  $-\frac{1}{3} \le y \le 1$ 
(C)  $-\frac{1}{3} > y > -1$ 
(D)  $\frac{1}{3} > y > 1$ 

 $\textbf{Q.37} \quad \text{If } f: R \rightarrow R, \ f(x) = \begin{cases} 1, & \text{when } x \in Q \\ -1, & \text{when } x \notin Q \end{cases} \text{, then}$ 

image set of R under f is -

- (A) {1, 1}
  (B) (−1, −1)
  (C) {1, −1}
  (D) None of these
- Q.38 If  $f: R \to R$ ,  $f(x) = x^2$ , then  $\{x | f(x) = -1\}$  equals-(A)  $\{-1, 1\}$  (B)  $\{1\}$ (C)  $\phi$  (D) None of these
- Q.39 The range of  $f(x) = \cos 2x \sin 2x$  contains the set -(A) [2, 4] (B) [-1, 1]
  - (C) [-2, 2] (D) [-4, 4]

IIT JEE PREPRETION

Q.40 If the domain of the function  $f(x) = \frac{|x|}{x}$  be [3, 7] then its range is-(A) [-1, 1] (B) {-1, 1} (C) {1} (D) {-1}

**Q.41** The domain of the function  $f(x) = \frac{1}{\sqrt{x - [x]}}$  is-

(A) R
(B) R-Z
(C) Z
(D) None of these

Q.42 The range of the function f(x) = 2 + x - [x-3] is-(A) [5, 6] (B) [5, 6) (C) R (D) None of these

### Question based on Value of function

- Q.43 If f is a real function satisfying the relation f(x + y) = f(x) f(y) for all x,  $y \in R$  and f(1) = 2, then  $a \in N$ , for which  $\sum_{k=1}^{n} f(a + k) = 16(2^{n} - 1)$ , is given by -(A) 2 (B) 4 (C) 3 (D) None of these
- **Q.44** If  $f : R \rightarrow R$ ,  $f(x) = \begin{cases} 1, & \text{when } x \in Q \\ -1, & \text{when } x \notin Q \end{cases}$ , then

which of the following statement is wrong?

- (A)  $f(\sqrt{2}) = -1$  (B)  $f(\pi) = -1$ (C) f(e) = 1 (D)  $f(\sqrt{4}) = 1$
- **Q.45** If  $f(x) = \frac{x(x-1)}{2}$ , then the value of f(x+2) is-

(A) 
$$f(x) + f(x + 1)$$
 (B)  $\frac{x + 2}{x} f(x + 1)$   
(C)  $\frac{(x + 1)}{2} f(x + 1)$  (D)  $\frac{(x + 2)}{2} f(x + 1)$ 

**Q.46** If f(x + ay, x - ay) = axy, then f(x, y) equals-

(A) 
$$\frac{x^2 + y^2}{4}$$
 (B)  $\frac{x^2 - y^2}{4}$   
(C)  $x^2$  (D)  $y^2$ 

Q.47 If  $f(x) = \cos (\log x)$ , then  $\frac{f(xy) + f(x/y)}{f(x)f(y)}$ equals-(A) 1 (B) -1 (C) 0 (D) 2

- Q.48 If f(x) = |x| + |x 1|, then for 0 < x < 1, f(x) equals-(A) 1 (B) -1 (C) 2x + 1 (D) 2x - 1
- Q.49 f(2x + 3y, 2x 7y) = 20 x then f(x, y) equals to (A) 7x - 3y (B) 7x + 3y(C) 3x - 7y (D) x - 10y
- Q.50 If  $f(x) = \log_{a}x$ , then f(ax) equals-(A) f(a) f(x) (B) 1+ f(x)(C) f(x) (D) a f(x)
- Q.51 If f(x) = (ax c)/(cx a) = y, then f(y) equals-(A) x (B) 1/x (C) 1 (D) 0

### Question Mapping

- Q.52 If  $f: I \rightarrow I, f(x) = x^3 + 1$ , then *f* is -(A) one-one but not onto (B) onto but not one-one (C) One-one onto (D) None of these
- Q.53 Function  $f : R \rightarrow R$ , f(x) = x |x| is -(A) one-one but not onto (B) onto but not one-one (C) one-one onto (D) neither one-one nor onto
- Q.54  $f: R \to R, f(x) = \frac{x^2}{1+x^2}$ , is -(A) many-one function (B) odd function (C) one-one function (D) None of these Q.55 If  $f: R_0 \to R_0, f(x) = \frac{1}{x}$ , then f is -
  - (A) one-one but not onto
  - (B) onto but not one-one
  - (C) neither one-one nor onto
  - (D) both one-one and onto

- Q.56 Function  $f : R \to R$ , f(x) = x + |x| is (A) one-one (B) onto (C) one-one onto (D) None of these
- Q.57 Function  $f: \left]\frac{\pi}{2}, \frac{3\pi}{2}\right[ \rightarrow R, f(x) = \tan x \text{ is}$ (A) one-one (B) onto (C) one-one onto (D) None of these Q.58 Function  $f: \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \rightarrow [-1,1], f(x) = \sin x \text{ is } -$
- (A) one-one (B) onto (C) one-one onto (D) None of these
- Q.59  $f: N \rightarrow N$  where  $f(x) = x (-1)^x$  then f ' is -(A) one-one and into (B) many-one and into (C) one-one and onto (D) many-one and onto
- **Q.60** If  $f: R \to R$ ,  $f(x) = e^{x} + e^{-x}$ , then f is -
  - (A) one-one but not onto
  - (B) onto but not one-one
  - (C) neither one-one nor onto
  - (D) both one-one and onto
- **Q.61** If  $f : R \to [-1,1]$ ,  $f(x) = \sin x$ , then f is-(A) one-one onto (B) one-one into
  - (C) many-one onto (D) many-one into
- **Q.62** If  $f: R \rightarrow R$ ,  $f(x) = \sin^2 x + \cos^2 x$ , then f is -
  - (A) one-one but not onto
  - (B) onto but not one-one
  - (C) neither one-one nor onto
  - (D) both one-one onto
- **Q.63** Which of the following functions from Z to itself are bijections ?

| $(A) f(x) = x^3$    | (B) $f(x) = x + 2$   |
|---------------------|----------------------|
| (C) $f(x) = 2x + 1$ | (D) $f(x) = x^2 + x$ |

Q.64 Which of the following functions from  $A = \{x: -1 \le x \le 1\}$  to itself are bijections ?

(A) 
$$f(x) = \frac{x}{2}$$
 (B)  $g(x) = \sin\left(\frac{\pi x}{2}\right)$   
(C)  $h(x) = |x|$  (D)  $k(x) = x^2$ 

- Q.65 Which of the following function is onto ? (A)  $f: R \to R$ ;  $f(x) = 3^x$ (B)  $f: R \to R^+$ ;  $f(x) = e^{-x}$ (C)  $f: [0,\pi/2] \to [-1,1]$ ;  $f(x) = \sin x$ (D)  $f: R \to R$ :  $f(x) = \cosh x$
- Q.66 Which of the following function defined from R to R is onto ? (A) f(x) = |x| (B)  $f(x) = e^{-x}$ (C)  $f(x) = x^3$  (D)  $f(x) = \sin x$ .
- Q.67 If  $f: I \rightarrow I$ ,  $f(x) = x^2 x$ , then f is -(A) one-one onto (B) one-one into (C) many-one onto (D) many-one into

# Question based on Composite function

- Q.68 If f(x) = 2x and g is identity function, then-(A) (fog) (x) = g(x) (B) (g + g) (x) = g(x) (C) (fog) (x) = (g + g) (x) (D) None of these
- Q.69 gof exists, when-(A) domain of f = domain of g(B) co-domain of f = domain of g(C) co-domain of g = domain of g(D) co-domain of g = co-domain of f
- Q.70 If  $f : R \to R$ ,  $f(x) = x^2 + 2x 3$  and  $g : R \to R$ , g(x) = 3x - 4, then the value of fog (x) is-(A)  $3x^2 + 6x - 13$  (B)  $9x^2 - 18x + 5$ (C)  $(3x - 4)^2 + 2x - 3$  (D) None of these
- Q.71 If  $f: R \to R$ ,  $f(x) = x^2 5x + 4$  and  $g: R \to R$ ,  $g(x) = \log x$ , then the value of (gof) (2) is -(A) 0 (B)  $\infty$ (C)  $-\infty$  (D) Undefined
- Q.72 If  $f: R^+ \rightarrow R^+$ ,  $f(x) = x^2 + 1/x^2$  and  $g: R^+ \rightarrow R^+$ ,  $g(x) = e^x$  then (gof) (x) equals-
  - (A)  $e^{x^2} + e^{x^{-2}}$  (B)  $e^{x^2} + \frac{1}{e^{x^{-2}}}$ (C)  $e^{2x} + e^{-2x}$  (D)  $e^{x^2} \cdot e^{x^{-2}}$

- Q.73 If f : R $\to$ R, g : R $\to$  R and f(x) = 3x + 4 and (gof) (x) = 2x - 1, then the value of g(x) is-(A) 2x - 1 (B) 2x - 11 (C)  $\frac{1}{2}$  (2x - 11) (D) None of these
- Q.74 If  $f : R \rightarrow R$ ,  $g : R \rightarrow R$  and g(x) = x + 3 and (fog)  $(x) = (x + 3)^2$ , then the value of f(-3) is -(A) -9 (B) 0 (C) 9 (D) None of these
- Q.75 If f(x) = ax + b and g(x) = cx + d, then f(g(x)) = g(f(x)) is equivalent to-(A) f(a) = g(c) (B) f(b) = g(b)(C) f(d) = g(b) (D) f(c) = g(a)
- Q.76 If f:[0,1]  $\rightarrow$  [0,1], f(x) =  $\frac{1-x}{1+x}$ . g : [0,1]  $\rightarrow$  [0,1], g(x) = 4x (1-x), then (fog) (x) equals-(A)  $\frac{1-4x+4x^2}{1+4x-4x^2}$  (B)  $\frac{8 x (1-x)}{(1+x)^2}$ (C)  $\frac{1-4x-4x^2}{1+4x-4x^2}$  (D) None of these
- Q.77 If f, g, h are three functions in any set, then wrong statement is -(A)  $(fog)^{-1} = g^{-1}of^{-1}$  (B)  $gof \neq fog$ (C) (fog)oh = fo(goh) (D)  $(gof)^{-1} = g^{-1}of^{-1}$
- **Q.78** If  $f(x) = \frac{1-x}{1+x}$ , then f [f (sin $\theta$ )] equals -(A) sin  $\theta$  (B) tan ( $\theta/2$ ) (C) cot ( $\theta/2$ ) (D) cosec  $\theta$
- Q.79 If  $f(x) = (a x^{n})^{1/n}$ ,  $n \in N$ , then f[f(x)] =(A) 0 (B) x (C)  $x^{n}$  (D)  $(a^{n} - x)^{n}$
- **Q.80** If  $f(x) = \log\left(\frac{1+x}{1-x}\right)$  and  $g(x) = \left(\frac{3x+x^3}{1+3x^2}\right)$ ,

then f[g(x)] is equal to-(A) -f(x)(B) 3f(x)(C)  $[f(x)]^3$ (D) None of these

IIT JEE PREPRETION

**Q.81** If function  $f(x) = \begin{cases} 1, & \text{when } x \in Q \\ 0, & \text{when } x \notin Q \end{cases}$ , (fof)  $(\sqrt{4})$ the value will be-(A) 0 (B) 2

- (C) 1 (D) None of these
- **Q.82** If  $f(y) = \frac{y}{\sqrt{1-y^2}}$ ,  $g(y) = \frac{y}{\sqrt{1+y^2}}$ , then (fog)(y) equals -
  - (A)  $\frac{y}{\sqrt{1-y^2}}$  (B)  $\frac{y}{\sqrt{1+y^2}}$ (C) y (D)  $\frac{1-y^2}{1+y^2}$
- Q.83 If f(x) = [x] and  $g(x) = \cos(\pi x)$ , then the range of gof is -(A) {0} (B) {-1, 1} (C) {-1, 0, 1} (D) [-1, 1]

# Question based on Inverse function

- Q.84 If  $f : R \to R$ ,  $f(x) = x^2 + 3$ , then pre-image of 2 under f is – (A) {1,-1} (B) {1} (C) {-1} (D)  $\phi$
- Q.85 Which of the following functions has its inverse-(A) f : R  $\rightarrow$ R, f(x) = a<sup>x</sup> (B) f : R $\rightarrow$ R, f(x) = |x| + |x - 1| (C) f : R<sub>0</sub> $\rightarrow$ R<sup>+</sup>, f(x) = |x| (D) f : [ $\pi$ , 2 $\pi$ ] $\rightarrow$  [-1,1], f(x) = cos x
- Q.86 If function  $f : R \rightarrow R^+$ ,  $f(x) = 2^x$ , then  $f^{-1}(x)$ will be equal to-(A)  $\log_x 2$  (B)  $\log_2 (1/x)$ (C)  $\log_2 x$  (D) None of these

**Q.87** The inverse of the function  $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2$  is given by -

(A) 
$$\log\left(\frac{x-2}{x-1}\right)^{1/2}$$
 (B)  $\log\left(\frac{x-1}{x+1}\right)^{1/2}$   
(C)  $\log\left(\frac{x}{2-x}\right)^{1/2}$  (D)  $\log\left(\frac{x-1}{3-x}\right)^{1/2}$ 

**Q.88** If  $f: [1, \infty) \to [2, \infty)$  is given by  $f(x) = x + \frac{1}{x}$ then  $f^{-1}(x)$  equals -

(A) 
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (B)  $\frac{x}{1 + x^2}$   
(C)  $\frac{x - \sqrt{x^2 - 4}}{2}$  (D)  $1 + \sqrt{x^2 - 4}$   
If  $f(x) = \log (x + \sqrt{1 + x^2})$  then  $f^{-1}(x)$  a

Q.89 If 
$$f(x) = \log_e(x + \sqrt{1 + x^2})$$
, then  $f^{-1}(x)$  equals-  
(A)  $\log(x - \sqrt{1 + x^2})$  (B)  $\frac{e^x + e^{-x}}{2}$   
(C)  $\frac{e^x - e^{-x}}{2}$  (D)  $\frac{e^x - e^{-x}}{e^x + e^{-x}}$ 

Q.90 If  $f(x) = x^3 - 1$  and domain of  $f = \{0, 1, 2, 3\}$ , then domain of  $f^{-1}$  is -(A)  $\{0, 1, 2, 3\}$  (B)  $\{1, 0, -7, -26\}$ (C)  $\{-1, 0, 7, 26\}$  (D)  $\{0, -1, -2, -3\}$ 

- Q.91 If  $f(x) = \{4 (x 7)^3\}^{1/5}$ , then its inverse is-(A)  $7 - (4 - x^5)^{1/3}$  (B)  $7 - (4 + x^5)^{1/3}$ (C)  $7 + (4 - x^5)^{1/3}$  (D) None of these
- Q.92 If  $f : R \rightarrow R$ ,  $f(x) = e^x \& g : R \rightarrow R$ , g(x) = 3x 2, then the value of  $(fog)^{-1}(x)$  is equal to -
  - (A)  $\log (x-2)$  (B)  $\frac{2 + \log x}{3}$ 
    - (C)  $\log\left(\frac{x+3}{2}\right)$  (D) None of these

# LEVEL-2

Q.1 The range of f (x) =  $\sin^{-1} \sqrt{x^2 + x + 1}$  is -(A) (0,  $\pi/2$ ] (B) (0,  $\pi/3$ ] (C) [ $\pi/3$ ,  $\pi/2$ ] (D) [ $\pi/6$ ,  $\pi/3$ ]

Q.2 If 
$$f(x) = \frac{1}{x+1}$$
 and  $g(x) = \frac{1}{\sqrt{x-1}}$ , then  
common domain of function is -  
(A)  $\{x \mid x < 1, x \in R\}$ 

- (B)  $\{x \mid x \ge 0, x \ne 1, x \in R\}$ (C)  $\{1\}$
- (D) {-1}

**Q.3** If 
$$f(x) = \left(\frac{x}{1-|x|}\right)^{1/12}$$
,  $x \in R$  then domain of

the function f(x) is -

- $\begin{array}{ll} (A) \ (-1,0] & (B) \ (-\infty, -1) \cup [0, 1) \\ (C) \ (-1, \ \infty) \{1\} & (D) \ None \ of \ these \end{array}$
- Q.4 If  $f : R \rightarrow R$ ,  $f(x) = \tan x$ , then pre-image of -1 under f is-

(A) 
$$\left\{ n\pi - \frac{\pi}{4} \middle| n \in I \right\}$$
 (B)  $\left\{ n\pi + \frac{\pi}{4} \middle| n \in I \right\}$ 

- (C)  $\{n\pi | n \in I\}$  (D) None of these
- Q.5 The domain of

$$f(x) = \sqrt{[\cos(\sin x)]} + (1 - x)^{-1} + \sin^{-1}\left(\frac{x^2 + 1}{2x}\right)$$
  
equal to -

(A)  $R - \{1\}$  (B)  $\{-1\}$ 

(C) 
$$(1, \infty)$$
 (D) None of these

Q.6 If  $f : R \to R$ ,  $f(x) = x^3 + 3$ , and  $g : R \to R$ , g(x) = 2x + 1, then  $f^{-1}og^{-1}(23)$  equals-(A) 2 (B) 3 (C) (14)<sup>1/3</sup> (D) (15)<sup>1/3</sup>

| Q.7 | The period of $f(x) =$ | $\frac{ \sin x  +  \cos x }{ \sin x - \cos x }$ is - |
|-----|------------------------|------------------------------------------------------|
|     | (A) π/2                | (B) π                                                |
|     | (C) 2π                 | (D) None of these                                    |

**Q.8** The function  $f(x) = \frac{\sec^{-1} x}{\sqrt{x - [x]}}$ , where [x]

denotes the greatest integer less than or equal to x, is defined for all x belonging to -(A) R (B)  $R - \{(-1, 1) \cup \{n : n \in Z\}\}$ (C)  $R^+ - \{0, 1\}$ (D)  $R^+ - \{n : n \in N\}$ 

**Q.9** The interval for which  $\sin^{-1}\sqrt{x} + \cos^{-1}\sqrt{x} = \frac{\pi}{2}$  holds-

- $\begin{array}{ll} (A) \ [0, \infty) & (B) \ [0, 3] \\ (C) \ [0, 1] & (D) \ [0, 2] \end{array}$
- Q.10 The function  $f(x) = \cos^{-1}\left(\frac{|x|-3}{2}\right)$ +  $[\log_e (4-x)]^{-1}$  is defined for -(A)  $[-1, 0] \cup [1, 5]$ (B)  $[-5, -1] \cup [1, 4]$ (C)  $[-5, -1] \cup ([1, 4) - \{3\})$ (D)  $[1, 4] - \{3\}$
- **Q.11** Function  $f: R \to R^+$ ,  $f(x) = x^2 + 2 \& g: R^+ \to R$ ,
  - $g(x) = \left(1 \frac{1}{1 x}\right) \text{ then the value of gof (2) is -}$ (A) 5/6 (B) 8/7 (C) 1/6 (D) 6/5
- **Q.12** Period of function  $2^{\{x\}} + \sin \pi x + 3^{\{x/2\}} + \cos 2\pi x$  is (where  $\{ \}$  represent fractional part of x) (A) 2 (B) 1 (C) 3 (D) None of these
- Q.13 Let  $f: (4, 6) \rightarrow (6, 8)$  be a function defined by f(x) = x + [x/2] where [] represent G.I.F. then  $f^{-1}(x)$  is equal to -

| (A) $x - 2$ | (B) $x - [x/2]$   |
|-------------|-------------------|
| (C) - x - 2 | (D) None of these |

**Q.14** If  $f(x) = \log \frac{1+x}{1-x}$ , when  $-1 < x_1, x_2 < 1$ , then  $f(x_1) + f(x_2)$  equals -

(A) 
$$f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right)$$
 (B)  $f\left(\frac{x_1 + x_2}{1 - x_1 x_2}\right)$   
(C)  $f\left(\frac{x_1 - x_2}{1 + x_1 x_2}\right)$  (D)  $f\left(\frac{x_1 - x_2}{1 - x_1 x_2}\right)$ 

- Q.15 Period of the function  $f(x) = |\sin \pi x| + e^{3(x-[x])}$ (where [] represent G.I.F.) is -(A) 1 (B) 2 (C) 1/3 (D) None of these
- **Q.16** If the domain of function  $f(x) = x^2 6x + 7$  is  $(-\infty, \infty)$ , then the range of function is -  $(A) (-\infty, \infty)$  (B)  $[-2, \infty)$ (C) (-2, 3) (D)  $(-\infty, -2)$
- Q.17 Period of  $f(x) = \sin 3\pi \{x\} + \tan \pi [x]$  where [] and {} represent of G.I.F and fractional part of x (A) 1 (B) 2 (C) 3 (D)  $\pi$
- **Q.18** If S be the set of all triangles and  $f: S \rightarrow R^+$ , f ( $\Delta$ ) = Area of  $\Delta$ , then f is -(A) One-one onto (B) one-one into (C) many-one onto (D) many-one into
- Q.19 If  $f: C \rightarrow R$ , f(z) = |z|, then f is -(A) one-one but not onto (B) onto but not one-one (C) neither one-one nor onto (D) both one-one and onto
- Q.20 If period of  $\frac{\cos (\sin nx)}{\tan (x/n)}$   $(n \in N)$  is  $6\pi$  then n is equal to -(A) 3 (B) 2 (C) 6 (D) 1
- **Q.21** If [x] and {x} represent the integral and fractional part of x respectively then value of

$$\sum_{r=1}^{2000} \frac{\{x + r\}}{2000} \text{ is}$$
(A) x (B) [x]  
(C) {x} (D) x + 2001

**Q.22** The period of  $f(x) = \cos(\sin x) + \cos(\cos x)$  is -

(A) 
$$\pi/3$$
 (B)  $\pi/6$   
(C)  $\pi$  (D)  $\pi/2$ 

**Q.23** If f be the greatest integer function and g be the modulus function, then

$$(gof)\left(-\frac{5}{3}\right) - (fog)\left(-\frac{5}{3}\right) =$$
  
(A) 1 (B) -1 (C) 2 (D) 4

- Q.24 The domain of function  $f(x) = \log |\log x|$  is-(A)  $(0, \infty)$  (B)  $(1, \infty)$ (C)  $(0, 1) \cup (1, \infty)$  (D)  $(-\infty, 1)$
- Q.26 Which of the following functions are equal? (A) f(x) = x,  $g(x) = \sqrt{x^2}$ (B)  $f(x) = \log x^2$ ,  $g(x) = 2 \log x$ (C) f(x) = 1,  $g(x) = \sin^2 x + \cos^2 x$ (D) f(x) = x/x, g(x) = 1
- Q.27 f: N  $\rightarrow$  N defined by f(x) = x<sup>2</sup> + x + 1, x  $\in$  N then f is (A) one-one onto (B) many-one onto (C) one-one but not onto (D) none of these
- **Q.28** Let  $f(x) = \sin^2 (x/2) + \cos^2 (x/2)$  and  $g(x) = \sec^2 x \tan^2 x$ . The two function are equal over the set -(A)  $\phi$ 
  - (B) R  $\left\{ x : x = (2n + 1)\frac{\pi}{2}, n \in Z \right\}$ (C) R
  - (D) None of these
- Q.29 The domain of the function

$$f(x) = \sin^{-1} \left(\frac{2 - |x|}{4}\right) + \cos^{-1} \left(\frac{2 - |x|}{4}\right) + \tan^{-1}$$
$$\left(\frac{2 - |x|}{4}\right) \text{ is given by}$$
$$(A) [-3, 3] \qquad (B) [-6, 6]$$
$$(C) [0, 6] \qquad (D) \text{ None of these}$$

Q.30 The domain of function  $f(x) = \frac{1}{\log_{10} (3 - x)} + \sqrt{x + 2} \text{ is } -$ (A) [-2, 3) (B) [-2, 3] - {2} (C) [-3, 2] (D) [-2, 3] - {2}

Q.31 Domain of the function 
$$f(x) = \frac{x-3}{(x-1)\sqrt{x^2-4}}$$

is -

(A) (1, 2)  
(B) 
$$(-\infty, -2) \cup (2, \infty)$$
  
(C)  $(-\infty, -2) \cup (1, \infty)$  (D)  $(-\infty, \infty) - \{1, \pm 2\}$ 

- Q.32 Domain and range of sin  $\left(\log\left(\frac{\sqrt{4-x^2}}{1-x}\right)\right)$  is -(A) [-2, 1), (-1, 1) (B) (-2, 1), [-1, 1] (C) (-2, 1), R (D) None of these
- Q.33 Let  $f : R \to R$  be a function defined by  $f(x) = x + \sqrt{x^2}$ , then f is-(A) injective (B) surjective (C) bijective (D) None of these
- Q.34 If  $f(x) = e^{3x}$  and g(x) = ln x, x > 0, then (fog) (x) is equal to-(A) 3x (B)  $x^{3}$ (C) log 3x (D)  $3 \log x$
- Q.35 If  $f: \mathbb{R} \to \mathbb{R}$   $f(x) = \cos(5x + 2)$  then the value of  $f^{-1}(x)$  is -

(A) 
$$\frac{\cos^{-1}(x) - 2}{5}$$
 (B)  $\cos^{-1}(x) - 2$   
(C)  $\frac{\cos^{-1}(x)}{5} - 2$  (D) Does not exist

**Q.36** Let 
$$f(x) = \frac{\sin([x]\pi)}{x^2 + 2x + 4}$$
, [.] = G.I.F., then which one is not true -

| (A) f is periodic | (B) f is even |
|-------------------|---------------|
| (C) f is many-one | (D) f is onto |

Q.37 The domain of function  $f(x) = \log (3x - 1) + 2 \log (x + 1) \text{ is } -$ (A) [1/3,  $\infty$ ) (B) [-1, 1/3] (C) (-1, 1/3) (D) None of these **Q.38** If  $f(x) = \frac{x}{\sqrt{1 + x^2}}$ , then (fofof) (x) is equal to-

(A) 
$$\frac{3x}{\sqrt{1+x^2}}$$
 (B)  $\frac{x}{\sqrt{1+3x^2}}$   
(C)  $\frac{3x}{\sqrt{1-x^2}}$  (D) None of these

- Q.39 If f (x) be a polynomial satisfying f (x). f(1/x)=f(x) + f(1/x) and f(4) = 65 then f(6) = ? (A) 176 (B) 217 (C) 289 (D) None of these
- Q.40 If  $f(x) = x^3 x$  and  $g(x) = \sin 2x$ , then-(A) g[f(1)] = 1 (B)  $f(g(\pi/12)) = -3/8$ (C)  $g\{f(2)\} = \sin 2$  (D) None of these
- Q.41 f: R  $\rightarrow$  R is defined by f(x) = cos<sup>2</sup>x + sin<sup>4</sup>x for x  $\in$  R then the range of f (x) is -(A) (3/4, 1) (B) [3/4, 1) (C) [3/4, 1] (D) (3/4, 1)

Q.42 The natural domain of the real valued function defined by  $f(x) = \sqrt{x^2 - 1} + \sqrt{x^2 + 1}$  is-(A)  $1 < x < \infty$  (B)  $-\infty < x < \infty$ (C)  $-\infty < x < -1$  (D)  $(-\infty,\infty) - (-1, 1)$ 

Q.43 If  $f(x) = \frac{\sqrt{9 - x^2}}{\sin^{-1}(3 - x)}$ , then domain of f is -(A) [2, 3] (B) [2, 3) (C) (2, 3] (D) None of these

Q.44 Let  $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$  (x  $\neq$  0), then f(x) equals -

(A) 
$$x^2 - 2$$
 (B)  $x^2 - 1$   
(C)  $x^2$  (D) None of these

Q.45 Let 
$$f(x) = \sqrt{(2 + x - x^2)}$$
 and  
 $g(x) = \sqrt{-x} + \frac{1}{\sqrt{x+2}}$ . Then domain of f + g  
is given by -  
(A) (-2 0] (B) [0, 1]  
(C) [-1, 0] (D) (0, 1)

- **Q.46** The range of  $\sin^{-1}[x^2 + 1/2] + \cos^{-1}[x^2 1/2]$ where [] represent G.I.F. (A) { $\pi/2, \pi$ } (B) { $\pi$ } (C) { $\pi/2$ } (D) None of these
- Q.47 If  $x = \log_a bc$ ,  $y = \log_b ca$ , and  $z = \log_c ab$ , then  $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$  equals-(A) 1 (B) x + y + z(C) abc (D) ab + bc + caQ.48 The range of 5 cos x - 12 sin x + 7 is-(A) [-6,20] (B) [-3,18]
- **Q.49** The domain of the function  $\log_2 \log_3 \log_4(x)$  is-(A)  $(1, \infty)$  (B)  $(2, \infty)$

(D) None of these

(C)  $(3, \infty)$  (D)  $(4, \infty)$ 

(C) [-6,15]

- Q.50 Let  $f(x) = \frac{x [x]}{1 [x] + x}$ , then range of f(x) is ([.] = G.I.F.) -(A) [0, 1] (B) [0, 1/2] (C) [1/2, 1] (D) [0, 1/2)
- Q.51  $f(x) = \log (\sqrt{x-3} + \sqrt{5-x}), x \in R$  then domain of f(x) is (A) [3, 5] (B)  $[-\infty, 3] \cup [5, \infty]$ (C) {3, 5} (D) None of these
- Q.52 The range of the function f(x) = |x 1| + |x 2|,  $-1 \le x \le 3$  is (A) [1, 3] (B) [1, 5] (C) [3, 5] (D) None of these

- Q.53 The range of the function  $y = \log_3 (5 + 4x x^2)$ is -(A) (0, 2] (B)  $(-\infty, 2]$ 
  - (C) (0, 9] (D) None of these
- **Q.54** Let  $f(x) = \frac{9^x}{9^x + 3}$  and f(x) + f(1-x) = 1 then find value of  $f\left(\frac{1}{1996}\right) + \left(\frac{2}{1996}\right) + \dots + f\left(\frac{1995}{1996}\right)$  is -(A) 998 (B) 997 (C) 997.5 (D) 998.5
- Q.55 The range of  $f(x) = \sqrt{(1 - \cos x)\sqrt{(1 - \cos x)\sqrt{1 - \cos x \dots \infty}}}$  is -(A) [0, 1] (B) [0, 1/2] (C) [0, 2] (D) None of these

**Q.1** The domain of definition of

$$f(x) = \sqrt{\log_{0.4} \left(\frac{x-1}{x+5}\right)} \times \frac{1}{x^2 - 36} \text{ is } -$$
(A)  $(x : x < 0, x \neq -6)$   
(B)  $(x : x > 0, x \neq 1, x \neq 6)$   
(C)  $(x : x > 1, x \neq 6)$   
(D)  $(x : x \ge 1, x \neq 6)$ 

- Q.2 The function  $f : R \rightarrow R$  defined by f(x) = (x - 1) (x - 2) (x - 3) is -(A) one-one but not onto (B) onto but not one-one (C) both one and onto (D) neither one-one nor onto
- Q.4 If  $g: [-2, 2] \rightarrow R$  where  $f(x) = x^3 + \tan x + \left[\frac{x^2 + 1}{p}\right]$  is a odd function then the value of p where [] represent G.I.F. -(A) - 5 (C) p > 5 (D) None of these

 $\frac{a^x - 1}{x^n (a^x + 1)}$ 

**Q.6** Let  $f : R \to R$  be a function defined by

f (x) = 
$$\frac{e^{|x|} - e^{-x}}{e^{x} + e^{-x}}$$
. Then -

(A) f is a bijection

- (B) f is an injection only
- (C) f is a surjection only
- (D) f is neither an injection nor a surjection

- Q.7 The value of  $n \in I$  for which the function  $f(x) = \frac{\sin nx}{\sin\left(\frac{x}{n}\right)} \text{ has } 4\pi \text{ as its period is-}$ (A) 2 (B) 3 (C) 4 (D) 5
- Q.8 If f(x) is an odd periodic function with period 2, then f(4) equals to-(A) 0 (B) 2 (C) 4 (D) -4
- **Q.9** Domain of the function

$$f(x) = \sin^{-1} \left( \log_{5} \frac{x^{2}}{5} \right) is$$
(A) [-5, -1]  $\cup$  [1, 5], (B) [-5, 5]

(C) 
$$(-5, -1) \cup (1, 5)$$
 (D) None of these

- Q.10 Domain of  $f(x) = \sqrt{\frac{1 |x|}{2 |x|}}$  is -(A) R - [-2, 2] (B) R - [-1, 1] (C) [-1, 1]  $\cup$  (- $\infty$ , -2)  $\cup$  (2,  $\infty$ ) (D) None of these
- Q.11 If  $f(x) = 3 \sin \sqrt{\frac{\pi^2}{16} x^2}$ , then values of f(x) lie in (A)  $\left[ -\frac{\pi}{4}, \frac{\pi}{4} \right]$  (B) [-2, 2] (C)  $\left[ 0, \frac{3}{\sqrt{2}} \right]$  (D) None of these

**Q.12** The period of  $f(x) = \sin \frac{x}{n!} + \cos \frac{x}{(n+1)!}$  is -

- (A) non-periodic
- (B) periodic with period  $(2\pi)$  n!
- (C) periodic with period  $2\pi (n + 1)!$
- (D) periodic with period 2 (n + 1)  $\pi$

 $\label{eq:Q.13} \textbf{ (I-x, 1+x, 2]; x \in R} is equivalent to -$ 

$$(A) f(x) = \begin{cases} 1 - x, x \le -1 \\ 2, -1 < x < 1 \\ 1 + x, x \ge 1 \end{cases}$$
$$(B) f(x) = \begin{cases} 1 + x, x \le -1 \\ 2, -1 < x < 1 \\ 1 - x, x \ge 1 \end{cases}$$
$$(C) f(x) = \begin{cases} 1 - x, x \le -1 \\ 1, -1 < x < 1 \\ 1 + x, x \ge 1 \end{cases}$$

(D) None of these

- Q.14 The domain of the function  $f(x) = {}^{9-x}P_{x-5}$  is-(A) [5, 7] (B) {5, 6, 7} (C) {3, 4, 5, 6, 7} (D) None of these
- Q.15 The range of the function  $f(x) = {}^{9-x}P_{x-5}$  is -(A) {1, 2, 3} (B) [1, 2] (C) {1, 2, 3, 4, 5} (D) None of these
- Q.16 Domain of the function

$$f(x) = \log_{2} \left( -\log_{1/2} \left( 1 + \frac{1}{\sqrt[4]{x}} \right) - 1 \right) is$$
  
(A) (0, 1) (B) (0, 1]  
(C) [1, \phi) (D) (1, \phi)

Q.17 The period of  $f(x) = [\sin 5x] + |\cos 6x| \text{ is } -$ (A)  $\frac{\pi}{2}$  (B)  $\pi$  (C)  $2\pi$  (D)  $\frac{2\pi}{5}$ 

**Q.18** Period of  $f(x) = \sin x + \tan \frac{x}{2} + \sin \frac{x}{2^2} + \tan \frac{x}{2}$ 

$$\frac{x}{2^{3}} + \dots + \sin \frac{x}{2^{n-1}} + \tan \frac{x}{2^{n}} \text{ is -}$$
(A)  $\pi$  (B)  $2\pi$  (C)  $2^{n}\pi$  (D)  $\frac{\pi}{2^{n}}$ 

Q.19 The period of  $f(x) = [x] + [2x] + ... + [nx] - \frac{n(n+1)}{2}x$  where  $n \in N$  and [] represent G.I.F. is (A) n (B) 1 (C)  $\frac{1}{n}$  (D) None of these

- **Q.20** The function  $f : [-1/2, 1/2] \rightarrow [-\pi/2, \pi/2]$ defined by  $f(x) = \sin^{-1}(3x - 4x^3)$  is-(A) both one-one and onto (B) neither one-one nor onto (C) onto but not one-one
  - (D) one-one but not onto

#### Q.21 The function f satisfies the equation

$$3f(x) + 2f\left(\frac{x+59}{x-1}\right) = 10 x + 30$$
 for all real  $x \neq 1$ .

The value of f(7) is -

(A) 8 (B) 4 (C) -8 (D) 11

Q.22 The domain of the function  $f(x) = \log_{3+x}(x^2 - 1)$  is -(A)  $(-3, -1) \cup (1, \infty)$ (B)  $[-3, -1) \cup [1, \infty)$ (C)  $(-3, -2) \cup (-2, -1) \cup (1, \infty)$ (D)  $[-3, -2) \cup (-2, -1) \cup [1, \infty)$ 

### Statement type Questions

Each of the questions given below consists of Statement-I and Statement-II. Use the following key to choose the appropriate answer.

- (A) Statement-I and Statement-II are true but Statement-II is the correct explanation of Statement-I
- (B) Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement-I.
- (C) Statement-I is true but Statement-II is false
- (D) Statement-I is false but Statement-II is true.
- Q.23 Statement- I : The period of

 $f(x) = \sin 2x \cos [2x] - \cos 2x \sin [2x]$  is  $\frac{1}{2}$ 

**Statement- II :** The period of x - [x] is 1 Where [.] = G.I.F.

- Q.24 Statement- I : If f(x) = |x 1| + |x 2| + |x 3|Where 2 < x < 3 is an identity function. Statement- II :  $f : A \rightarrow A$  defined by f(x) = x is an identity function.
- Q.25 Statement- I :  $f : R \rightarrow R$  defined by  $f(x) = \sin x$ is a bijection Statement- II : If f is both one and onto it is bijection
- **Q. 26** Statement- I:  $f : R \to R$  is a function defined by  $f(x) = \frac{2x + 1}{3}$ .

Then  $f^{-1}(x) = \frac{3x - 1}{2}$ 

**Statement- II :** f(x) is not a bijection.

**Q.27** Statement- I : If f is even function, g is odd function then  $\frac{f}{g}$ ,  $(g \neq 0)$  is an odd function.

**Statement- II :** If f(-x) = -f(x) for every x of its domain, then f(x) is called an odd function and if f(-x) = f(x) for every x of its domain, then f(x) is called an even function.

- **Q.28** Statement I : Function  $f(x) = sinx + \{x\}$  is periodic with period  $2\pi$ Statement II : sinx and  $\{x\}$  are both periodic with period  $2\pi$  and 1 respectively.
- Q.29 Statement I :  $y = f(x) = \frac{x^2 2x + 4}{x^2 2x + 5}, x \in R$ Range of f(x) is [3/4, 1)

**Statement II :**  $(x - 1)^2 = \frac{4y - 3}{1 - y}$ .

### > Passage Based Questions

Passage :-

Let here we define  $f : R \rightarrow [-1, 1]$  and  $g : R \rightarrow [-1, 1]$ . Now  $f(x) = 2\cos^2 x - 1$ ,  $g(x) = \cos 2x$ , h(x) = f(x) + g(x), I(x) = f(x) - g(x),  $j(x) = \frac{f(x)}{g(x)}$  are 5 functions.

### On the basis of above information, answer the following questions-

- Q.30 Which statement is correct-
  - (A) Period of f(x), g(x) and h(x) are same and value is  $\frac{2\pi}{3}$
  - (B) Period of f(x), g(x) and h(x) makes the A.P. with common difference  $\frac{\pi}{4}$
  - (C) Sum of periods of f(x), g(x) and h(x) is 3π(D) None of these
- Q.31 Which statement is correct regarding function
  - j(x) and I(x)-
    - (A) The domain of j(x) and I(x) are the same
    - (B) Range of j(x) and I(x) are the same
    - (C) The union of domain of j(x) and I(x) are all real numbers
    - (D) None of these
- **Q.32** If the solution of equation I(x) g(x) = 0 are  $x_1, x_2, x_3, \dots, x_n$  when  $x \in [0, 10\pi]$  then which option is correct-
  - (A)  $x_1$ ,  $x_2$ ,  $x_3$  ...  $x_n$  makes the A.P. with common difference  $\pi$
  - (B) Total no. of solutions of I(x) g(x) = 0 is 20 for  $x \in [0, 10\pi]$
  - (C) Sum of all solutions of the given equation is  $100\pi$  in the interval [0,  $10\pi$ ]
  - (D) (B) and (C) are correct
- **Q.33** If  $h : R \to [-2, 2]$ , then -
  - (A) h(x) is one-one function
  - (B) h(x) is one-one and onto function
  - (C) h(x) is onto function
  - (D) h(x) is many one and into function
- Q.34 Domain and range of j(x) respectively -
  - (A) R and  $\{1\}$ 
    - (B) R and {0, 1}
  - (C)  $R \{(2n + 1) \pi/4\}, n \in I \text{ and } \{1\}$
  - (D)  $R \{(2n + 1) \pi/2\}, n \in I \text{ and } \{1\}$

### > Column Matching Questions

Match the entry in Column 1 with the entry in Column 2.

Q.35 Match the column

Column 1 Column 2 (A)  $f(x) = \{x\}$ , the fractional(P)  $f^{-1}(x) = \frac{1}{2}(4^x - 4^{-x})$ 

part of x

- (B)  $f(x) = \frac{16^x 1}{4^x}$  (Q) f is an even function
- (C)  $f(x) = \log_4 (x + \sqrt{x^2 + 1})$  (R) f is a periodic function
- (D)  $f(x) = x \frac{3^x 1}{3^x + 1}$  (S) f is odd function

# **LEVEL-4**

|     |                                                        | (Question asked in previ                                       | ous AIE | <b>EE and IIT-JEE</b> )                          |
|-----|--------------------------------------------------------|----------------------------------------------------------------|---------|--------------------------------------------------|
|     | SECTI                                                  | ON -A                                                          | Q.8     | A function f from t                              |
| Q.1 | Which of the follow                                    | ing is not a periodic function -                               |         | integers defined by                              |
|     |                                                        | [AIEEE 2002]                                                   |         | $\int \frac{n-1}{n}$ when                        |
|     | (A) $\sin 2x + \cos x$                                 | (B) $\cos \sqrt{x}$                                            |         | $f(n) = \begin{cases} 2 \\ n \end{cases}$        |
|     | (C) $\tan 4x$                                          | (D) $\log \cos 2x$                                             |         | $\left  -\frac{n}{2} \right $ , when n           |
| Q.2 | The period of $\sin^2 x$                               | is- <b>[AIEEE 2002]</b>                                        |         |                                                  |
|     | (A) $\pi/2$ (B) $\pi$                                  | (C) $3\pi/2$ (D) $2\pi$                                        |         | (A) neither one-one                              |
| 0.3 | The function f . D                                     | $\mathbf{D}$ defined by $f(\mathbf{x}) = \sin \mathbf{x}$      |         | (B) one-one but not                              |
| Q.3 | is                                                     | $\rightarrow$ K defined by $I(x) = \sin x$                     |         | (C) onto but not one                             |
|     | (A) into                                               | (B) onto                                                       |         | (D) one-one and on                               |
|     | (C) one-one                                            | (D) many-one                                                   | Q.9     | The range of the fur                             |
| 0.4 |                                                        | 2 + x                                                          |         | (A) (1, 2, 2)                                    |
| Q.4 | The range of the f                                     | unction $f(x) = \frac{1}{2-x}$ , $x \neq 2$                    |         | (A) $\{1, 2, 3\}$                                |
|     | is -                                                   | [AIEEE-2002]                                                   |         | $(C)$ {1, 2, 3, 4}                               |
|     | (A) R                                                  | (B) $R - \{-1\}$                                               | Q.10    | If $f : R \rightarrow S$ , defined               |
|     | (C) $R - \{1\}$                                        | (D) $R - \{2\}$                                                |         | is onto, then the inter                          |
| Q.5 | The function $f(x) =$                                  | $\log (x + \sqrt{x^2 + 1})$ , is-                              |         |                                                  |
|     |                                                        | [AIEEE 2003]                                                   |         | (A) [0, 3]                                       |
|     | (A) neither an even                                    | nor an odd function                                            |         | (C) [0, 1]                                       |
|     | (B) an even functio                                    | n                                                              | Q.11    | The graph of the fur                             |
|     | (C) an odd function                                    | l                                                              |         | about the line $x = 2$                           |
|     | (D) a periodic function                                | tion                                                           |         | (A) $f(x+2) = f(x-2)$                            |
| Q.6 | Domain of def                                          | inition of the function                                        |         | (C) $f(x) = f(-x)$                               |
|     | $f(x) = \frac{3}{3} + \log \frac{3}{3}$                | $x_{10} (x^3 - x)$ , is-                                       | 0.44    |                                                  |
|     | $4 - x^{2}$                                            |                                                                | Q.12    | The domain of the fu                             |
|     | $(\mathbf{A})$ $(1, 0)$ $(1, 0)$                       | [AIEEE 2003]                                                   |         |                                                  |
|     | (A) $(-1, 0) \cup (1, 2)$<br>(C) $(-1, 0) \cup (1, 2)$ | (D) $(1, 2) \cup (2, \infty)$<br>(D) $(1, 2) \cup (2, \infty)$ |         | (A) [2, 3] (B) [2, 3]                            |
| Q.7 | If $f : R \rightarrow R$ satisfie                      | es $f(x + y) = f(x) + f(y)$ , for                              | Q.13    | Let $f: (-1, 1) \rightarrow 1$                   |
|     | all x, $y \in R$ and $f(1$                             | $= 7$ , then $\sum_{r=1}^{n} f(r)$ is-                         |         | $f(x) = \tan^{-1} \frac{2x}{1 - x^2}$            |
|     |                                                        | [AIEEE 2003]                                                   |         | onto when B is the                               |
|     | (A) $\frac{7 n (n + 1)}{2}$                            | (B) $\frac{7 n}{2}$                                            |         | $(\mathbf{A})\left(0,\frac{\pi}{2}\right)$       |
|     | (C) $\frac{7(n+1)}{2}$                                 | (D) 7n (n+1)                                                   |         | (C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ |

n f from the set of natural numbers to lefined by

$$f(\mathbf{n}) = \begin{cases} \frac{n-1}{2}, \text{ when } \mathbf{n} \text{ is odd} \\ \frac{n}{2}, \text{ when } \mathbf{n} \text{ is even} \end{cases}$$
 is

[AIEEE 2003]

- er one-one nor onto
- ne but not onto
- out not one-one

ne and onto both

of the function  $f(x) = {}^{7-x}P_{x-3}$  is-

#### [AIEEE 2004]

- 3} (B) {1, 2, 3, 4, 5, 6} (D) {1, 2, 3, 4, 5} 3,4}
- S, defined by  $f(x) = \sin x \sqrt{3} \cos x + 1$ , en the interval of S is-

[AIEEE 2004]

| (A) [0, 3] | (B) [-1, 1] |
|------------|-------------|
| (C) [0, 1] | (D) [-1, 3] |

- of the function y = f(x) is symmetrical line x = 2, then-[AIEEE 2004] f(x-2) (B) f(2 + x) = f(2 - x)f(-x) (D) f(x) = -f(-x)
- in of the function  $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$  is-

#### [AIEEE 2004]

(B) [2, 3) (C) [1, 2] (D) [1, 2)

 $-1, 1) \rightarrow B$ , be a function defined by  $n^{-1} \frac{2x}{1-x^2}$ , then f is both one-one and n B is the interval - [AIEEE-2005]  $(\mathbf{D}) \begin{bmatrix} \pi \\ \pi \end{bmatrix}$ )

(A) 
$$\begin{bmatrix} 0, -\frac{\pi}{2} \end{bmatrix}$$
 (B)  $\begin{bmatrix} 0, -\frac{\pi}{2} \end{bmatrix}$   
(C)  $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$  (D)  $\begin{pmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ 

**Q.14** A real valued function f(x) satisfies the functional equation f(x - y) = f(x) f(y) - f(a - x) f(a + y)where a is a given constant and f(0) = 1, then f(2a - x) is equal to - [AIEEE-2005] (A) -f(x) (B) f(x) (C) f(a) + f(a - x) (D) f(-x)

The largest interval lying in 
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
 for

the function  $f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)$ 

which

[AIEEE 2007]

defined, is-

Q.15

(A)  $[0, \pi]$  (B)  $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ 

(C) 
$$\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$$
 (D)  $\left[0, \frac{\pi}{2}\right]$ 

(A) 
$$g(y) = 4 + \frac{y+3}{4}$$
 (B)  $g(y) = \frac{y+3}{4}$   
(C)  $g(y) = \frac{y-3}{4}$  (D)  $g(y) = \frac{3y+4}{3}$ 

- Q.17 For real x, let  $f(x) = x^3 + 5x + 1$ , then -[AIEEE 2009]
  - (A) f is one one but not onto R
  - (B) f is onto R but not one one
  - (C) f is one one and onto on R
  - (D) f is neither one one nor onto R

Q.18 Let 
$$f(x) = (x + 1)^2 - 1, x \ge -1$$
  
Statement - 1 :  
The set  $\{x : f(x) = f^{-1}(x)\} = \{0, -1\}.$ 

Statement - 2 :

- (A) Statement -1 is true, Statement-2 is true;
  - Statement-2 is a correct explanation for Statement -1
- (B) Statement-1 is true, Statement-2 is true; Statement-2 is *not* a correct explanation for Statement -1.
- (C) Statement -1 is true, Statement-2 is false.
- (D) Statement -1 is false, Statement-2 is true.

- Q.19 The domain of the function
  - $f(x) = \frac{1}{\sqrt{|x| x}} \text{ is :} \qquad [AIEEE 2011]$ (A)  $(-\infty, \infty)$  (B)  $(0, \infty)$ (C)  $(-\infty, 0)$  (D)  $(-\infty, \infty) - \{0\}$

#### **SECTION-B**

Q.1 If function  $f(x) = \frac{1}{2} - tan\left(\frac{\pi x}{2}\right)$ ; (-1 < x < 1)and  $g(x) = \sqrt{3 + 4x - 4x^2}$ , then the domain of gof is - [IIT-1990] (A) (-1, 1) (B) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (C)  $\left[-1, \frac{1}{2}\right]$  (D)  $\left[-\frac{1}{2}, -1\right]$ 

**Q.2** If  $f(x) = \cos [\pi^2]x + \cos [-\pi^2]x$ , where [x] stands for the greatest integer function, then [IIT-1991]

(A) 
$$f\left(\frac{\pi}{2}\right) = -1$$
 (B)  $f(\pi) = 1$   
(C)  $f\left(\frac{\pi}{4}\right) = 2$  (D) None of these

- Q.3 The value of b and c for which the identity f(x + 1) - f(x) = 8x + 3 is satisfied, where  $f(x) = bx^2 + cx + d$ , are-(A) b = 2, c = 1 (B) b = 4, c = -1 (C) b = -1, c = 4 (D) None
- Q.5 Let  $2 \sin^2 x + 3 \sin x 2 > 0$  and  $x^2 x 2 < 0$ (x is measured in radians). Then x lies in the interval [IIT-1994]

(A) 
$$\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$
 (B)  $\left(-1, \frac{5\pi}{6}\right)$ 

(C) (-1, 2)  
(D) 
$$\left(\frac{\pi}{6}, 2\right)$$
  
Q.6 Let  $f(x) = (x + 1)^2 - 1$ ,  $(x \ge -1)$ . Then the set  
 $S = \{x : f(x) = f^{-1}(x)\}$  is - [IIT-1995]  
(A) Empty  
(B)  $\{0, -1\}$   
(C)  $\{0, 1, -1\}$   
(D)  $\left\{0, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\right\}$ 

- Q.7 If f(1) = 1 and f(n + 1) = 2f(n) + 1 if  $n \ge 1$ , then f(n) is[IIT-1995] (A)  $2^{n+1}$ (B)  $2^n$ (C)  $2^n - 1$ (D)  $2^{n-1} - 1$
- **Q.8** If f is an even function defined on the interval (-5, 5), then the real values of x satisfying the

equation 
$$f(x) = f\left(\frac{x+1}{x+2}\right)$$
 are-  
(A)  $\frac{-1\pm\sqrt{5}}{2}$ ,  $\frac{-3\pm\sqrt{5}}{2}$   
(B)  $\frac{-1\pm\sqrt{3}}{2}$ ,  $\frac{-3\pm\sqrt{3}}{2}$   
(C)  $\frac{-2\pm\sqrt{5}}{2}$   
(D) None of these

Q.9 Let  $f(x) = [x] \sin\left(\frac{\pi}{[x+1]}\right)$ , where [.] denotes the greatest integer function. The domain of f is ...... [IIT 1996] (A)  $\{x \in \mathbb{R} | x \in [-1, 0)\}$ (B)  $\{x \in \mathbb{R} | x \notin [1, 0)\}$ (C)  $\{x \in \mathbb{R} | x \notin [-1, 0)\}$ (D) None of these Q.10 If  $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos x$ 

$$\left(x + \frac{\pi}{3}\right)$$
 and g  $\left(\frac{5}{4}\right) = 1$ , then (gof) (x) =  
[IIT 1996]  
(A) -2 (B) -1 (C) 2 (D) 1

Q.11 If 
$$g(f(x)) = |\sin x| \text{ and } f(g(x)) = (\sin \sqrt{x})^2$$
, then  
[IIT 1998]  
(A)  $f(x) = \sin^2 x$ ,  $g(x) = \sqrt{x}$   
(B)  $f(x) = \sin x$ ,  $g(x) = |x|$   
(C)  $f(x) = x^2$ ,  $g(x) = \sin \sqrt{x}$   
(D) f and g cannot be determined  
Q.12 If  $f(x) = 3x - 5$ , then  $f^{-1}(x)$  [IIT 1998]  
(A) is given by  $\frac{1}{3x - 5}$   
(B) is given by  $\frac{x + 5}{3}$   
(C) does not exist because f is not one-one  
(D) does not exist because f is not onto  
Q.13 If the function  $f: [1, \infty) \rightarrow [1, \infty)$  is defined by  
 $f(x) = 2^{x(x-1)}$ , then  $f^{-1}(x)$  is [IIT 1999]  
(A)  $\left(\frac{1}{2}\right)^{x(x-1)}$   
(B)  $\frac{1}{2}(1 + \sqrt{1 + 4\log_2 x})$   
(C)  $\frac{1}{2}(1 - \sqrt{1 + 4\log_2 x})$   
(D) not defined  
Q.14 The domain of definition of the function  
 $y(x)$  given by the equation  $2^x + 2^y = 2$  is –

[IIT Scr. 2000]

(A) 
$$0 < x < 1$$
  
(C)  $-\infty < x < 0$   
(B)  $0 < x < 1$   
(D)  $-\infty < x < 1$ 

**Q.15** Let  $f(\theta) = \sin\theta (\sin\theta + \sin 3\theta)$ , then  $f(\theta)$ [IIT 2000] (A)  $\geq 0$  only when  $\theta \geq 0$ (B)  $\leq 0$  for all  $\theta$ 

(C)  $\geq 0$  for all real  $\theta$ 

(D)  $\leq 0$  only when  $\theta \leq 0$ 

 Q.16
 The number of solutions of  $\log_4(x-1) = \log_2(x-3)$  is [IIT Scr. 2001]

 (A) 3
 (B) 1
 (C) 2
 (D) 0

 FUNCTION
 22

Q.17 Let  $f(x) = \frac{\alpha x}{x+1}$ ,  $x \neq -1$ , then for what value of  $\alpha$ ,  $f\{f(x)\} = x$ . [IIT Scr. 2001] (A)  $\sqrt{2}$  (B)  $-\sqrt{2}$  (C) 1 (D) -1

Q.18 The domain of definition of  $f(x) = \frac{\log_2 (x+3)}{x^2 + 3x + 2}$ is [IIT Scr. 2001] (A) R / { -2, -2 } (B) (-2,  $\infty$ ) (C) R/ {-1, -2, -3 } (D) (-3,  $\infty$ ) / {-1, -2 }

Q.19 If  $f: [1, \infty) \rightarrow [2, \infty)$  is given by  $f(x) = x + \frac{1}{x}$ then  $f^{-1}(x)$  equals – [IIT Scr. 2001]

then f<sup>-1</sup> (x) equals – [IIT Scr. 2001]  
(A) 
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (B)  $\frac{x}{1 + x^2}$   
(C)  $\frac{x - \sqrt{x^2 - 4}}{2}$  (D)  $1 + \sqrt{x^2 - 4}$ 

Q.20 Let 
$$g(x) = 1 + x - [x]$$
 and  

$$f(x) = \begin{cases} -1 & ; x < 0 \\ 0 & ; x = 0 \end{cases}$$
. Then for all x,  $f(g(x))$  is  
 $1 & ; x > 0$ 

equal to :

(where [.] denotes the greatest integer function):

[IIT Scr. 2001]

- (A) x (B) 1 (C) f(x) (D) g(x)
- **Q.21** Suppose  $f(x) = (x + 1)^2$  for  $x \ge -1$ . If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y = x, then g(x) equals- [IIT Scr. 2002]

(A) 
$$-\sqrt{x} - 1, x \ge 0$$
 (B)  $\frac{1}{(x+1)^2}, x > -1$   
(C)  $\sqrt{x+1}, x \ge -1$  (D)  $\sqrt{x} - 1, x \ge 0$ 

- Q.22 Let function  $f : R \to R$  be defined by  $f(x) = 2x + \sin x$  for  $x \in R$ . Then f is- [IIT Scr. 2002] (A) one to one and onto
  - (B) one to one but NOT onto
  - (C) onto but NOT one to one

(D) neither one to one nor onto

- **Q.23** Let  $f(x) = \frac{x}{1+x}$  defined as  $[0, \infty) \rightarrow [0, \infty)$ , f(x) is- [IIT Scr.2003] (A) one-one & onto (B) one-one but not onto (C) not one-one but onto (D) neither one-one nor onto
- **Q.24** Find the range of  $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$  is-

(A) 
$$(1, \infty)$$
 (B)  $\left(1, \frac{11}{7}\right)$   
(C)  $\left(1, \frac{7}{3}\right)$  (D)  $\left(1, \frac{7}{5}\right)$ 

Q.25 Domain of 
$$f(x) = \sqrt{\sin^{-1}(2x) + \pi/6}$$
 is-  
[IIT Scr.2003]

(A)  $\left[-\frac{1}{4}, \frac{1}{2}\right]$  (B)  $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (C)  $\left[-\frac{1}{4}, \frac{1}{4}\right]$  (D)  $\left[-\frac{1}{2}, \frac{1}{4}\right]$ 

Q.26 Let  $f(x) = \sin x + \cos x \& g(x) = x^2 - 1$ , then g(f (x)) will be invertible for the domain-[IIT Scr.2004]

(A) 
$$\mathbf{x} \in [0, \pi]$$
 (B)  $\mathbf{x} \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$   
(C)  $\mathbf{x} \in \left[0, \frac{\pi}{2}\right]$  (D)  $\mathbf{x} \in \left[-\frac{\pi}{2}, 0\right]$ 

Q.27  $f(x) = \begin{cases} x & x \in Q \\ 0 & x \notin Q \end{cases}; g(x) = \begin{cases} 0 & x \in Q \\ x & x \notin Q \end{cases}$ then (f - g) is [IIT Scr.2005] (A) one-one, onto (B) neither one-one, nor onto (C) one-one but not onto (D) onto but not one-one Q.28 Let  $f(x) = x^2$  and  $g(x) = \sin x$  for all  $x \in R$ 

Q.28 Let  $f(x) = x^2$  and  $g(x) = \sin x$  for all  $x \in R$ . Then the set of all x satisfying (fogogof) (x) = (gogof) (x), where (fog)(x) = f(g(x)), is -[IIT 2011] (A)  $\pm \sqrt{n\pi}$ ,  $n \in \{0, 1, 2, ...\}$ (B)  $\pm \sqrt{n\pi}$ ,  $n \in \{1, 2, ...\}$ (C)  $\frac{\pi}{2} + 2n\pi$ ,  $n \in \{..., -2, -1, 0, 1, 2, ...\}$ (D)  $2n\pi$ ,  $n \in \{..., -2, -1, 0, 1, 2, ...\}$ 

IIT JEE PREPRETION

# **ANSWER KEY**

# LEVEL- 1

| Q.No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans.  | С  | А  | В  | В  | Α  | С  | D  | С  | С  | D  | Α  | А  | D  | А  | В  | С  | В  | В  | А  | В  |
| Q.No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| Ans.  | А  | С  | В  | D  | В  | В  | С  | В  | В  | В  | В  | В  | В  | С  | В  | А  | С  | С  | В  | С  |
| Q.No. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| Ans.  | В  | В  | С  | С  | В  | В  | D  | А  | В  | В  | А  | А  | С  | А  | D  | D  | С  | С  | С  | С  |
| Q.No. | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| Ans.  | С  | С  | В  | В  | В  | С  | D  | С  | В  | В  | D  | D  | С  | С  | С  | А  | D  | Α  | В  | В  |
| Q.No. | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |    |    |    |    |    |    |    |    |
| Ans.  | С  | С  | В  | D  | D  | С  | D  | А  | С  | С  | С  | В  |    |    |    |    |    |    |    |    |

### LEVEL-2

| Q.No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans.  | С  | В  | В  | А  | В  | А  | В  | В  | С  | С  | D  | А  | А  | А  | А  | В  | А  | С  | С  | С  |
| Q.No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| Ans.  | С  | D  | А  | С  | D  | С  | С  | В  | В  | В  | В  | В  | D  | В  | D  | D  | D  | В  | В  | В  |
| Q.No. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |    |    |    |    |    |
| Ans.  | В  | D  | В  | А  | С  | В  | А  | А  | D  | D  | А  | В  | В  | С  | С  |    |    |    |    |    |

# LEVEL- 3

| Q.No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans.  | С  | В  | С  | С  | D  | D  | А  | А  | А  | С  | С  | С  | А  | В  | А  | А  | С  | С  | В  | А  |
| Q.No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |    |    |    |    |    |    |
| Ans.  | В  | С  | А  | А  | D  | С  | А  | D  | А  | С  | С  | D  | С  | С  |    |    |    |    |    |    |

**Q.35** A  $\rightarrow$  R, B  $\rightarrow$  P, C  $\rightarrow$  S, D  $\rightarrow$  Q

# LEVEL-4

**SECTION-A** 

| Q.No. | 1 | 2 | 3   | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|-------|---|---|-----|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|
| Ans.  | В | В | A,D | В | С | А | А | D | А | D  | В  | В  | D  | А  | D  | С  | В  | В  | С  |

### SECTION-B

| Q.No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ans.  | В  | А  | В  | D  | D  | В  | С  | А  | С  | D  | А  | В  | В  | D  | С  |
| Q.No. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |    |    |
| Ans.  | В  | D  | D  | А  | В  | D  | А  | В  | С  | А  | В  | А  | А  |    |    |