HYPERBOLA

AIEEE Syllabus

- 1. Standard equation and definitions
- 2. Conjugate Hyperbola
- 3. Parametric equation of the Hyperbola
- 4. Position of a point $P(x_1, y_1)$ with respect to Hyperbola
- 5. Line and Hyperbola
- 6. Equation of the Tangent

Total No. of questions	s in Ellipse are:
Solved examples	10
Level # 1	
Level # 2	31
Level # 3	13
Total No. of questions	88

- 1. Students are advised to solve the questions of exercises (Levels # 1, 2, 3, 4) in the same sequence or as directed by the faculty members.
- 2. Level # 3 is not for foundation course students, it will be discussed in fresher and target courses.

Index : Preparing your own list of Important/Difficult Questions

Instruction to fill

- (A) Write down the Question Number you are unable to solve in **column A** below, by Pen.
- (B) After discussing the Questions written in **column A** with faculties, strike off them in the manner so that you can see at the time of Revision also, to solve these questions again.
- (C) Write down the Question Number you feel are important or good in the column B.

EVEDCISE	COLUMN :A	COLUMN :B
NO.	Questions I am unable to solve in first attempt	Good/Important questions
Level # 1		
Level # 2		
Level # 3		
Level # 4		

Advantages

- 1. It is advised to the students that they should prepare a question bank for the revision as it is very difficult to solve all the questions at the time of revision.
- 2. Using above index you can prepare and maintain the questions for your revision.

1. Standard Equation and Definitions

Standard Equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

(i) Definition hyperbola :

A **Hyperbola** is the locus of a point in a plane which moves in the plane in such a way that the ratio of its distance from a fixed point (called focus) in the same plane to its distance from a fixed line (called directrix) is always constant which is always greater than unity.

(ii) Vertices :

The point A and A' where the curve meets the line joining the foci S and S' are called vertices of hyperbola.

(iii) Transverse and Conjugate axes :

The straight line joining the vertices A and A' is called transverse axes of the hyperbola. Straight line perpendicular to the transverse axes and passes through its centre called conjugate axes.

(iv) Latus Rectum :

The chord of the hyperbola which passes through the focus and is perpendicular to its transverse axes is

called latus rectum. Length of latus rectum = $\frac{2b^2}{a}$.

(v) Eccentricity :

For the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $b^2 = a^2 (e^2 - 1)$
 $e = \sqrt{1 + \left(\frac{2b}{b}\right)^2} = \sqrt{1 + \left(\frac{\text{Conjugate axes}}{b^2}\right)^2}$

2

$$e = \sqrt{1 + \left(\frac{1}{2a}\right)} = \sqrt{1 + \left(\frac{1}{Transverse}\right)}$$

2

(vi) Focal distance :

The distance of any point on the hyperbola from the focus is called the focal distance of the point.

Note : The difference of the focal distance of a point on the hyperbola is constant and is equal to the length of the transverse axes. |S'P - SP| = 2a (const.)

2. Conjugate Hyperbola

The hyperbola whose transverse and conjugate axes are respectively the conjugate and transverse axes of a given hyperbola is called conjugate hyperbola.

Equation of conjugate hyperbola
$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Note :

(i) If e_1 and e_2 are the eccentricities of the

hyperbola and its conjugate then
$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$

S	No. Particulars	Hyperbola	Conjugate Hyperbola
		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
1	Co-ordinate of the centre	(0, 0)	(0, 0)
2	Co-ordinate of the vertices	(a, 0) & (-a, 0)	(0, b) & (0, -b)
3	Co-ordinate of foci	(± ae, 0)	$(0, \pm be)$
4	Length of the transverse axes	2a	2b
5	Length of the conjugate axes	2b	2a
6	Equation of directrix	$x = \pm a/e$	$y = \pm b/e$
7	Eccentricity	$e = \sqrt{1 + \frac{b^2}{a^2}}$	$e = \sqrt{1 + \frac{a^2}{b^2}}$
8	Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
9	Equation of transverse axes	y = 0	$\mathbf{x} = 0$
1). Equation of conjugate axes	$\mathbf{x} = 0$	$\mathbf{y} = 0$

(ii) The focus of hyperbola and its conjugate are

3. Parametric equation of the Hyperbola

Let the equation of ellipse in standard form will be

given by
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Then the equation of ellipse in the parametric form will be given by $x = a \sec \phi$, $y = b \tan \phi$ where ϕ is the eccentric angle whose value vary from $0 \le \phi < 2\pi$. Therefore coordinate of any point P on the ellipse will be given by (a sec ϕ , b tan ϕ).

Position of a point P(x₁, y₁) with respect to Hyperbola

The quantity $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$ is positive, zero or negative according as the point (x_1, y_1) lies inside on or outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Line and Hyperbola

"The straight line y = mx + c is a sacant, a tangent or passes outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ according as $c^2 > = < a^2m^2 - b^2$

6. Equation of Tangent

concyclic.

(i) The equation of tangents of slope m to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $y = mx \pm \sqrt{a^2m^2 - b^2}$ and the co-ordinates of the point of contacts are

$$\left(\pm\frac{a^2m}{\sqrt{a^2m^2-b^2}},\pm\frac{b^2}{\sqrt{a^2m^2-b^2}}\right)$$

(ii) Equation of tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

at the point (x_1, y_1) is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

- (iii) Equation of tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - at the point (a sec θ , b tan θ) is $\frac{x}{a} \sec \theta \frac{y}{b}$ tan $\theta = 1$

Note: In general two tangents can be drawn from an external point (x_1, y_1) to the hyperbola and they are $y - y_1 = m_1 (x - x_1)$ and $y - y_1 = m_2 (x - x_1)$, where m_1 and m_2 are roots of

$$(x_1^2 - a^2) m^2 - 2x_1y_1 + y_1^2 + b^2 = 0$$

SOLVED EXAMPLES

- **Ex.1** Find the equation of the hyperbola whose directrix is 2x + y = 1, focus (1, 2) and eccentricity $\sqrt{3}$.
- **Sol.** Let P (x,y) be any point on the hyperbola. Draw PM perpendicular from P on the directrix.

Then by definition
SP = e PM

$$\Rightarrow (SP)^2 = e^2(PM)^2$$

$$\Rightarrow (x-1)^2 + (y-2)^2 = 3 \left\{ \frac{2x+y-1}{\sqrt{4+1}} \right\}^2$$

$$\Rightarrow 5(x^2+y^2-2x-4y+5)$$

$$= 3(4x^2+y^2+1+4xy-2y-4x)$$

$$\Rightarrow 7x^2 - 2y^2 + 12xy - 2x + 14y - 22 = 0$$
which is the required hyperbola.

- **Ex.2** Find the lengths of transverse axis and conjugate axis, eccentricity and the coordinates of foci and vertices; lengths of the latus rectum, equations of the directrices of the hyperbola $16x^2 9y^2 = -144$.
- Sol. The equation $16x^2 9y^2 = -144$ can be written as $\frac{x^2}{9} - \frac{y^2}{16} = -1$. This is of the form

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$\therefore$$
 $a^2 = 9, b^2 = 16 \implies a = 3, b = 4$

Length of transverse axis :

The length of transverse axis = 2b = 8

Length of conjugate axis :

The length of conjugate axis = 2a = 6

Eccentricity :
$$e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$$

Foci : the co- ordinates of the foci are $(0,\pm$ be), i.e., $(0,\pm 4)$

Length of Latus rectum :

The length of latus rectum = $\frac{2a^2}{b} = \frac{2(3)^2}{4} = \frac{9}{2}$

Equation of directrices :

IIT-JEE PREPRETION – MATHE

The equation of directrices are $y = \pm \frac{b}{c}$

$$y = \pm \frac{4}{(5/4)} = \pm \frac{16}{5}$$

- **Ex.3** Find the position of the point (5, -4) relative to the hyperbola $9x^2 y^2 = 1$.
- Sol. Since $9(5)^2 (-4)^2 1 = 225 16 1 = 208 > 0$ so the point (5, -4) lies outside the hyperbola $9x^2 - y^2 = 1$
- **Ex.4** The line 5x + 12y = 9 touches the hyperbola $x^2 9y^2 = 9$ at the point (A) (-5,4/3) (B) (5, -4/3) (C) (3, -1/2) (D) None of these
- **Sol.[B]** We have : m = Slope of the tangent = $-\frac{5}{12}$

If a line of slope m is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then the coordinates of the point of contact are

$$\left(\pm \frac{a^2m}{\sqrt{a^2m^2 - b^2}}, \pm \frac{b^2}{\sqrt{a^2m^2 - b^2}}\right)$$

Here, $a^2 = 9$, $b^2 = 1$ and $m = -5/12$
So, points of contact are $\left(\pm 5, \pm \frac{4}{3}\right)$
i.e. $\left(-5, \frac{4}{3}\right)$ and $\left(5, -\frac{4}{3}\right)$.
Out of these two points $\left(5, -\frac{4}{3}\right)$ lies on the line

- 5x + 12y = 9. Hence, $\left(5, -\frac{4}{3}\right)$ is the required point.
- Ex. 5 The equation of the common tangents to the parabola $y^2 = 8x$ and the hyperbola $3x^2 - y^2 = 3$ is -(A) $2x \pm y + 1 = 0$ (B) $x \pm y + 1 = 0$

(C)
$$x \pm 2y + 1 = 0$$
 (D) $x \pm y + 2 = 0$

Sol.[A] Parabola $y^2 = 8x$ $\therefore 4a = 8 \implies a = 2$ Any tangent to the parabola is $y = mx + \frac{2}{m}$...(i)

If it is also tangent to the hyperbola

$$\frac{x^2}{1} - \frac{y^2}{3} = 1 \text{ i.e. } a^2 = 1, b^2 = 3 \text{ then}$$

$$c^2 = a^2m^2 - b^2 \Rightarrow \left(\frac{2}{m}\right)^2 = 1.m^2 - 3$$
or m⁴ - 3m² - 4 = 0 \Rightarrow (m²-4) (m² + 1) = 0
 \therefore m = ±2 putting for m in (i), we get the tangents
as 2x ± y + 1 = 0

Ex.6 The locus of the point of intersection of the lines

$$\sqrt{3} x - y - 4\sqrt{3} k = 0$$
 and
 $\sqrt{3} kx + ky - 4\sqrt{3} = 0$ for different values of k
is -
(A) Ellipse (B) Parabola
(C) Circle (D) Hyperbola
Sol.[D] $\sqrt{3} x - y = 4\sqrt{3} k$...(i)

and
$$\sqrt{3} kx + ky - 4\sqrt{3} = 0$$

 $\Rightarrow k(\sqrt{3} x + y) = 4\sqrt{3}$...(ii)
To find the locus of their point of intersection
eliminate the variable K between the equations

from (i) K =
$$\frac{\sqrt{3}x - y}{4\sqrt{3}}$$
 and putting in (ii), we get
($\sqrt{3}x - y$) ($\sqrt{3}x + y$) = $(4\sqrt{3})^2$
 $3x^2 - y^2 = 48$
or $\frac{x^2}{16} - \frac{y^2}{48} = 1$

Hence the locus is hyperbola

Ex.7 The eccentricity of the conic represented by $x^2 - y^2 - 4x + 4y + 16 = 0$ is -

(A) 1 (B)
$$\sqrt{2}$$
 (C) 2 (D) $\frac{1}{2}$

Sol.[B] We have
$$x^2 - y^2 - 4x + 4y + 16 = 0$$

or $(x^2 - 4x) - (y^2 - 4y) = -16$
or $(x^2 - 4x + 4) - (y^2 - 4y + 4) = -16$
or $(x - 2)^2 - (y - 2)^2 = -16$
or $\frac{(x - 2)^2}{4^2} - \frac{(y - 2)^2}{4^2} = -1$
i.e. $e^2 = 1 + \frac{a^2}{b^2}$ (\because conjugate hyperbola)
 $e^2 = 1 + \frac{4^2}{4^2} \implies e = \sqrt{2}$

- **Ex.8** The equation $9x^2 16y^2 18x + 32y 151 = 0$ represent a hyperbola -(A) The length of the transverse axes is 4
 - (B) Length of latus rectum is 9

(C) Equation of directrix is $x = \frac{21}{5}$ and $x = -\frac{11}{5}$ (D) None of these **Sol.[C]** We have $9x^2 - 16y^2 - 18x + 32y - 151 = 0$ $9(x^2 - 2x) - 16(y^2 - 2y) = 151$ $9(x^2 - 2x + 1) - 16(y^2 - 2y + 1) = 144$ $9(x - 1)^2 - 16(y - 1)^2 = 144$ $\frac{(x - 1)^2}{16} - \frac{(y - 1)^2}{9} = 1$ Comparing with $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$ where X = x - 1, Y = y - 1and $a^2 = 16$, $b^2 = 9$ so The length of the transverse axes = 2a = 8The length of the latus rectum $= \frac{2b^2}{a} = \frac{9}{2}$ The equation of the directrix $X = \pm \frac{a}{e}$ $x - 1 = \pm \frac{16}{5} \Rightarrow x = \pm \frac{16}{5} + 1$ $x = \frac{21}{5}$; $x = -\frac{11}{5}$

- **Ex.9** For what value of λ does the line $y = 2x + \lambda$ touches the hyperbola $16x^2 9y^2 = 144$?
- **Sol.** :: Equation of hyperbola is $16x^2 9y^2 = 144$

or
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
 comparing this with
 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we get $a^2 = 9$, $b^2 = 16$ and
comparing this line $y = 2x + \lambda$ with $y = mx + c$;
 $m = 2 \& c = \lambda$
If the line $y = 2x + \lambda$ touches the hyperbola
 $16x^2 - 9y^2 = 144$
then $c^2 = a^2m^2 - b^2 \implies \lambda = 9(2)^2 - 16$
 $\therefore \lambda = \pm 2\sqrt{5}$

Ex.10 Find the equation of the tangent to the hyperbola $x^2 - 4y^2 = 36$ which is perpendicular to the line x - y + 4 = 0.

Sol. Let m be the slope of the tangent since the tangent is perpendicular to the line x - y + 4 = 0.

$$\therefore \text{ m x } 1 = -1 \qquad \Rightarrow \text{ m} = -1$$

since
$$x^2 - 4y^2 = 36$$

or
$$\frac{x^2}{36} - \frac{y^2}{9} = 1$$

Comparing this with $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1;$
$$\therefore a^2 = 36 \& b^2 = 9 \text{ so the equation of tangents}$$

$$y = (-1) x \pm \sqrt{36 x (-1)^2 - 9}$$

$$\Rightarrow y = -x \pm \sqrt{27} \text{ or } x + y \pm 3\sqrt{3} = 0$$

HYPERBOLA

are

based on Equation & Properties of Hyperabola

Q.1 The vertices of a hyperbola are at (0, 0) and (10, 0) and one of its foci is at (18, 0). The equation of the hyperbola is -

(A)
$$\frac{x^2}{25} - \frac{y^2}{144} = 1$$

(B) $\frac{(x-5)^2}{25} - \frac{y^2}{144} = 1$
(C) $\frac{x^2}{25} - \frac{(y-5)^2}{144} = 1$
(D) $\frac{(x-5)^2}{25} - \frac{(y-5)^2}{144} = 1$

- Q.2 If the latus rectum of an hyperbola be 8 and eccentricity be $\frac{3}{\sqrt{5}}$, then the equation of the hyperbola is-(A) $4x^2 - 5y^2 = 100$ (B) $5x^2 - 4y^2 = 100$
 - (C) $4x^2 + 5y^2 = 100$ (D) $5x^2 + 4y^2 = 100$
- Q.3 The foci of the hyperbola $9x^2 - 16y^2 + 18x + 32y - 151 = 0$ are-(A) (2, 3), (5, 7) (B) (4, 1), (-6, 1) (C) (0, 0), (5, 3) (D) None of these
- **Q.4** The foci of the hyperbola $4x^2 9y^2 36 = 0$ are-

(A)
$$[\pm \sqrt{11}, 0]$$
 (B) $[\pm \sqrt{12}, 0]$
(C) $[\pm \sqrt{13}, 0]$ (D) $[0, \pm \sqrt{12}]$

- Q.5 Foci of the hyperbola $\frac{x^2}{16} \frac{(y-2)^2}{9} = 1$ are (A) (5, 2); (-5, 2) (B) (5, 2); (5, -2) (C) (5, 2); (-5, -2) (D) None of these
- **Q.6** The eccentricity of a hyperbola passing through the points (3, 0), $(3\sqrt{2}, 2)$ will be-
 - (A) $\sqrt{13}$ (B) $\frac{\sqrt{13}}{3}$ (C) $\frac{\sqrt{13}}{4}$ (D) $\frac{\sqrt{13}}{2}$

Q.7 Equation of the hyperbola with eccentricity 3/2 and foci at $(\pm 2, 0)$ is-

(A)
$$\frac{x^2}{4} - \frac{y^2}{5} = \frac{4}{9}$$
 (B) $\frac{x^2}{9} - \frac{y^2}{9} = \frac{4}{9}$
(C) $\frac{x^2}{4} - \frac{y^2}{9} = 1$ (D) None of these

- Q.8 If the centre, vertex and focus of a hyperbola be (0, 0), (4, 0) and (6, 0) respectively, then the equation of the hyperbola is-(A) $4x^2 - 5y^2 = 8$ (B) $4x^2 - 5y^2 = 80$
 - (C) $5x^2 4y^2 = 80$ (D) $5x^2 4y^2 = 8$
- **Q.9** The eccentricity of the hyperbola can never be equal to-
 - (A) $\sqrt{\frac{9}{5}}$ (B) $2\sqrt{\frac{1}{9}}$ (C) $3\sqrt{\frac{1}{8}}$ (D) $\sqrt{2}$
- Q.10 The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is-

(A)
$$\frac{4}{3}$$
 (B) $\frac{4}{\sqrt{3}}$
(C) $\frac{2}{\sqrt{3}}$ (D) None of these

- Q.11 If the length of the transverse and conjugate axes of a hyperbola be 8 and 6 respectively, then the difference of focal distances of any point of the hyperbola will be(A) 8 (B) 6
 (C) 14 (D) 2
- Q.12 If m is a variable, the locus of the point of

intersection of the lines $\frac{x}{3} - \frac{y}{2} = m$ and $\frac{x}{3} + \frac{y}{2} = \frac{1}{m}$ is a/ an-(A) parabola (B) ellipse (C) hyperbola (D) None of these

IIT-JEE PREPRETION – MATHE

The equation of the hyperbola whose foci are (6, 5), (-4, 5) and eccentricity 5/4 is-(A) $\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1$ (B) $\frac{x^2}{16} - \frac{y^2}{9} = 1$

(C)
$$\frac{(x-1)^2}{9} - \frac{(y-5)^2}{16} = 1$$

(D) None of these

Q.13

Q.14 The equation
$$\frac{x^2}{12-\lambda} + \frac{y^2}{8-\lambda} = 1$$
 represents
(A) a hyperbola if $\lambda < 8$
(B) an ellipse if $\lambda > 8$
(C) a hyperbola if $8 < \lambda < 12$
(D) None of these

Q.15 The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a rectangular hyperbola if-(A) $\Delta \neq 0$, $h^2 > ab$, a + b = 0(B) $\Delta \neq 0$, $h^2 < ab$, a + b = 0(C) $\Delta \neq 0$, $h^2 = ab$, a + b = 0(D) None of these

Q.16	The equation $\frac{x^2}{1-k}$	$-\frac{y^2}{1+k} = 1, k > 1$ represents-
	(A) circle	(B) ellipse
	(C) hyperbola	(D) None of these

Q.17 If e and e' be the eccentricities of two conics S and S' such that $e^2 + e'^2 = 3$, then both S and S' are-

(A) ellipse	(B) parabolas
(C) hyperbolas	(D) None of these

- **Q.18** A point moves in a plane so that its distances PA and PB from two fixed points A and B in the plane satisfy the relation $PA - PB = k \ (k \neq 0)$, then the locus of P is-
 - (A) a parabola
 - (B) an ellipse
 - (C) a hyperbola
 - (D) a branch of a hyperbola

- Q.19 The equation of the conic with focus at (1, -1), directrix along x - y + 1 = 0 and with eccentricity $\sqrt{2}$ is-(A) $x^2 - y^2 = 1$ (B) xy = 1(C) 2xy - 4x + 4y + 1 = 0(D) 2xy + 4x - 4y - 1 = 0
- Q.20 The length of the latus rectum of the hyperbola

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = -1 \text{ is-}$$
(A) $\frac{2a^{2}}{b}$ (B) $\frac{2b^{2}}{a}$
(C) $\frac{b^{2}}{a}$ (D) $\frac{a^{2}}{b}$

- **Q.21** The equation $16x^2 3y^2 32x + 12y 44 = 0$ represents a hyperbola-
 - (A) the length of whose transverse axis is $4\sqrt{3}$
 - (B) the length of whose conjugate axis is 4
 - (C) whose centre is (-1, 2)

(D) whose eccentricity is $\sqrt{\frac{19}{3}}$

Q.22 The length of the transverse axis of a hyperbola is 7 and it passes through the point (5, -2). The equation of the hyperbola is-

(A)
$$\frac{4}{49} x^2 - \frac{196}{51} y^2 = 1$$

(B) $\frac{49}{4} x^2 - \frac{51}{196} y^2 = 1$
(C) $\frac{4}{49} x^2 - \frac{51}{196} y^2 = 1$
(D) none of these

Q.23 The latus rectum of a hyperbola $\frac{x^2}{16} - \frac{y^2}{p} = 1$ is

$$4\frac{1}{2}$$
. Its eccentricity e =
(A) 4/5 (B) 5/4 (C) 3/4 (D) 4/3

Q.24 Consider the set of hyperbola $xy = k, k \in \mathbb{R}$. Let e_1 be the eccentricity when k = 4 and e_2 be the eccentricity when k = 9. Then $e_1^2 + e_2^2 =$ (A) 2 (B) 3 (C) 4 (D) 1

Q.25 The eccentricity of the hyperbola $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is given by -

(A)
$$e = +\sqrt{\frac{a^2 + b^2}{a^2}}$$
 (B) $e = +\sqrt{\frac{a^2 - b^2}{a^2}}$
(C) $e = +\sqrt{\frac{b^2 - a^2}{a^2}}$ (D) $e = +\sqrt{\frac{a^2 + b^2}{b^2}}$

Q.26 If e and e' be the eccentricities of a hyperbola and its conjugate, then $\frac{1}{e^2} + \frac{1}{e'^2} =$ (A) 0 (B) 1 (C) 2 (D) None of these

Question based on Line and Hyperbola

Q.27 The equation of a tangent parallel to
$$y = x$$

drawn to $\frac{x^2}{3} - \frac{y^2}{2} = 1$ is-
(A) $x - y + 1 = 0$ (B) $x - y + 2 = 0$
(C) $x + y - 1 = 0$ (D) $x - y + 2 = 0$

Q.28 The line |x + my + n = 0 will be a tangent to the

hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, if -
(A) $a^{2l^2} + b^2m^2 = n^2$ (B) $a^{2l^2} - b^2m^2 = n^2$
(C) $am^2 - b^2n^2 = a^{2l^2}$ (D) None of these

Q.29 The equation of tangents to the hyperbola $x^2 - 4y^2 = 36$ which are perpendicular to the line x-y+4=0

(A) $y = -x + 3\sqrt{3}$ (B) $y = x - 3\sqrt{3}$ (C) $y = -x \pm 2$ (D) None of these

- Q.30 The line y = x + 2 touches the hyperbola $5x^2 - 9y^2 = 45$ at the point-(A) (0, 2) (B) (3, 1) (C) (-9/2, -5/2) (D) None of these
- Q.31 Equation of tangent to the hyperbola $2x^2 - 3y^2 = 6$ which is parallel to the line y = 3x + 4 is-(A) y = 3x + 5(B) y = 3x - 5(C) y = 3x + 5 and y = 3x - 5(D) none of these
- **Q.32** If the straight line x cos α + y sin α = p be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then-(A) $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$ (B) $a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p^2$ (C) $a^2 \sin^2 \alpha + b^2 \cos^2 \alpha = p^2$ (D) $a^2 \sin^2 \alpha - b^2 \cos^2 \alpha = p^2$

Q.33 The value of m for which y = mx + 6 is a tangent to the hyperbola $\frac{x^2}{100} - \frac{y^2}{49} = 1$ is-(A) $\sqrt{\frac{17}{20}}$ (B) $\sqrt{\frac{20}{17}}$ (C) $\sqrt{\frac{3}{20}}$ (D) $\sqrt{\frac{20}{3}}$

Q.34 Equation of one of common tangent to parabola $y^2 = 8x$ and hyperbola $3x^2 - y^2 = 3$ is-(A) 2x - y - 1 = 0 (B) 2x - y + 1 = 0(C) y + 2x + 1 = 0 (D) y - 2x + 1 = 0

Q.1 The latus rectum subtends a right angle at other focus of a hyperbola then its eccentricity is-

(A)
$$\sqrt{3} + 1$$
 (B) $\sqrt{2} + 1$
(C) $-\sqrt{3} + \sqrt{2}$ (D) 2

Q.2 The equation of the hyperbola whose foci are the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and the eccentricity is 2, is -

(A)
$$\frac{x^2}{4} + \frac{y^2}{12} = 1$$
 (B) $\frac{x^2}{4} - \frac{y^2}{12} = 1$
(C) $\frac{x^2}{12} + \frac{y^2}{4} = 1$ (D) $\frac{x^2}{12} - \frac{y^2}{4} = 1$

Q.3 A tangent to a hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

intercepts a length of unity from each of the coordinate axes, then the point (a, b) lies on the-(A) $x^2 - y^2 = 2$ (B) $x^2 - y^2 = 1$ (C) $x^2 - y^2 = -1$ (D) none of these

Q.4 A common tangent to $9x^2 - 16y^2 = 144$ and $x^2 + y^2 = 9$ is -

(A)
$$y = \frac{3}{\sqrt{7}} x + \frac{15}{\sqrt{7}}$$
 (B) $y = 3\sqrt{\frac{2}{7}} x + \frac{15}{\sqrt{7}}$
(C) $y = 2\sqrt{\frac{3}{7}} x + 15\sqrt{7}$ (D) none of these

Q.5 The product of the lengths of the perpendiculars drawn from foci on any tangent to the hyperbola

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 \text{ is } -$$
(A) a^{2}
(B) b^{2}
(C) $a^{2}b^{2}$
(D) a^{2}/b^{2}

Q.6 The area of quadrilateral formed by focii of hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$ and its conjugate hyperbola is-(A) 14 (B) 24 (C) 12 (D) None of these Q.7 The equations to the common tangents to the two hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ are-(A) $y = \pm x \pm \sqrt{b^2 - a^2}$

(B)
$$y = \pm x \pm \sqrt{a^2 - b^2}$$

(C) $y = \pm x \pm (a^2 - b^2)$
(D) $y = \pm x \pm \sqrt{a^2 + b^2}$

Q.8 A hyperbola has axes along coordinate axes. Its transverse axis is 2a and it passes through (h,k) then its eccentricity is-

(A)
$$\sqrt{\frac{h^2 + k^2 + a^2}{h^2 - a^2}}$$
 (B) $\sqrt{\frac{h^2 - a^2}{h^2 + k^2 + a^2}}$
(C) $\sqrt{\frac{h^2 + k^2 - a^2}{h^2 - a^2}}$ (D) $\sqrt{\frac{h^2 - a^2}{h^2 + k^2 - a^2}}$

Q.9 If the focii of the ellipse $\frac{x^2}{k^2a^2} + \frac{y^2}{a^2} = 1$ and the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$ coincides then value of k =

(A)
$$\pm \sqrt{3}$$
 (B) $\pm \sqrt{2}$
(C) $\sqrt{3}$ (D) $\sqrt{2}$

Q.10 The locus of the point of intersection of the lines bxt – ayt = ab and bx + ay = abt is (A) a parabola
(B) an ellipse
(C) a hyperbola
(D) None of these

Q.11 Let LL' be the latus rectum through the focus S of a hyperbola and A' be the farther vertex of the conic. If $\Delta A'LL'$ is equilateral then its eccentricity e =

(A)
$$\sqrt{3}$$
 (B) $\sqrt{3} + 1$
(C) $(\sqrt{3} + 1)/\sqrt{2}$ (D) $(\sqrt{3} + 1)/\sqrt{3}$

Q.12 If the latus rectum subtends a right angle at the centre of the hyperbola then its eccentricity is

(A)
$$e = (\sqrt{13})/2$$
 (B) $e = (\sqrt{5}-1)/2$
(C) $e = (\sqrt{5}+1)/2$ (D) $e = (\sqrt{3}+1)/2$

Q.13 The equation $x = \frac{e^t + e^{-t}}{2}$; $y = \frac{e^t - e^{-t}}{2}$; $t \in R$ represents (A) an ellipse (B) a parabola (C) a hyperbola (D) a circle

Q.14 If the tangent at the point $(2 \sec \theta, 3 \tan \theta)$ of the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel to 3x - y + 4 = 0 then the value of θ is

(A)
$$45^{\circ}$$
 (B) 60° (C) 30° (D) 75

Q.15 The ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ have in common-(A) centre only

- (B) centre, foci and directrices
- (C) centre, foci and vertices
- (D) centre and vertices only
- **Q.16** The tangents to the hyperbola $x^2 y^2 = 3$ are parallel to the straight line 2x + y + 8 = 0 at the following points-
 - $\begin{array}{ll} (A) (2, 1) & (B) (2, -1) \\ (C) (-2, 1) & (D) (-2, -1) \end{array}$
- **Q.17** P is a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at

transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to -

(A)
$$e^2$$
 (B) a^2 (C) b^2 (D) $\frac{b^2}{a^2}$

- **Q.18** If e_1 , e_2 are the eccentricities of the ellipse $\frac{x^2}{18} + \frac{y^2}{4} = 1$ and the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ respectively, then the relation between e_1 and e_2
 - (A) $3e_1^2 + e_2^2 = 2$ (B) $e_1^2 + 2e_2^2 = 3$ (C) $2e_1^2 + e_2^2 = 3$ (D) $e_1^2 + 3e_2^2 = 2$

- Q.19 The value of m for which line $y = mx + 2\sqrt{5}$ touches the hyperbola $16x^2 - 9y^2 = 144$ are the roots of the equation $x^2 - (a + b)x - 4 = 0$, then (a + b) is equal to-(A) 2 (B) 4
 - (C) 0 (D) none of these
- Q.20 The area of triangle formed by lines $x^2-y^2 = 0$ and any tangent to the hyperbola $x^2-y^2 = a^2$ is-(A) $2a^2$ (B) $4a^2$ (C) a^2 (D) None of these
- Q.21 If the distances between the foci and the distance between the directrices of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are in the ratio 3: 2 then a : b is-(A) $\sqrt{2}$: 1 (B) $\sqrt{3}$: $\sqrt{2}$ (C) 1 : 2 (D) 2 : 1
- **Q.22** If the eccentricity of the hyperbola $x^2 - y^2 \sec^2 \alpha = 5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^2 \sec^2 \alpha + y^2 = 25$, then a value of α is-
 - (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$
- **Q.23** If the tangent at the point P(a sec α , b tan α) to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets its transverse axis at T, then ST (S focus) must be equal to (A) a(e - cos α) (B) b(e + cos α) (C) a(e + cos α) (D) $\sqrt{a^2e^2 + b^2 \cot^2 \alpha}$

Assertion-Reason: (Q. No. 24 to 27)

The following questions given below consist of an "Assertion" (1) and "Reason "(2) Type questions. Use the following key to choose the appropriate answer.

- (A) Both (1) and (2) are true and (2) is the correct explanation of (1)
- (B) Both (1) and (2) are true but (2) is not the correct explanation of (1)
- (C) (1) is true but (2) is false
- (D) (1) is false but (2) is true

Q.24 Statement-(1): If $P(x_1, y_1)$ is a point on $b^2x^2 + a^2y^2 = a^2b^2$ then area $\Delta SPS'$ $= ae \sqrt{a^2 - x_1^2}$

> Statement-(2) : A tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets the transverse and conjugate axis in P and Q then $\frac{a^2}{CP^2} - \frac{b^2}{CQ^2} = 1$, where C is the centre of the conic. Which of the statements is correct? (A) both 1 and 2 (B) only 1 (C) only 2 (D) neither 1 nor 2

- **Q.25** Statement-(1) : The conic $16x^2 3y^2 32x + 12y 44 = 0$ represent a hyperbola. Statement- (2) : The square of the coefficient of xy is greater than the product of the coefficient of $x^2 \& y^2$ and $\Delta \neq 0$.
- **Q.26** Statement-(1): The latus-rectum of the hyperbola $x^2 y^2 = a^2$ is equal to the length of its transverse axis.

Statement-(2): The semi latusrectum of the

ellipse $b^2x^2 + a^2y^2 = a^2 b^2$ is equal to $\frac{b^2}{a}$.

Statement- (1) : The equation $x^{2} + 2y^{2} + \lambda xy + 2x + 3y + 1 = 0$ can never represent a hyperbola.

Statement- (2): The general equation of second degree represents a hyperbola if $h^2 > ab$.

Passage : (Q.No.28 & 29)

If parametric equation of hyperbola is $x = \frac{e^{t} + e^{-t}}{2}$ & $y = \frac{e^{t} - e^{-t}}{3}$ then.

Q.28 Eccentricity of hyperbola is
(A)
$$\frac{\sqrt{13}}{2}$$
 (B) $\frac{\sqrt{13}}{3}$ (C) $\frac{3}{2}$ (D) $\sqrt{13}$
Q.29 Eccentric angle of point $\left(2, \frac{2}{\sqrt{3}}\right)$ on hyperbola
(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$ (D) None of these

Column Matching Questions: (Q.No.30 to 31)

Q.30	Match the column	
	Column I	Column II
	(A) The number of tangents	(P) 1
	from $(1, -1)$ to the	
	hyperbola $9x^2 - 16y^2 = 144$	
	(B) The number of tangents	(Q) 4
	from $(-1, 1)$ to the	
	ellipse $16x^2 + 9y^2 = 144$	
	(C) If e_1 and e_2 are the	(R) 3
	eccentricities of $xy = c^2$	
	and $x^2 - y^2 = a^2$ then	
	$e_1^2 + e_2^2 =$	(S) 0
		(T) 2

Q.31 Match the following curves with their respective parameter points:

Column I
 Column II

 (A)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (P) $\frac{a}{2} \left(t + \frac{1}{t} \right), \frac{b}{2} \left(t - \frac{1}{t} \right)$

 (B) $xy = c^2$
 (Q) $\left(ct, \frac{c}{t} \right)$

 (C) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
 (R) (a sec t, b tan t)

 (S) (c tan t, c cot t)
 (T) (a cos t, b sin t)

Q.27

LEVEL- 3

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q.1	The latus rectum of the	The latus rectum of the hyperbola							
	$16x^2 - 9y^2 = 144$ is-	[AIEEE-2002]							
	(A) 16/3	(B) 32/3							
	(C) 8/3	(D) 4/3							

Q.2	The foci of the ellipse	$\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the
	hyperbola $\frac{x^2}{144} - \frac{y^2}{81} =$	$\frac{1}{25}$ coincide. Then the
	value of b ² is-	[AIEEE- 2003]
	(A) 9	(B) 1
	(C) 5	(D) 7

- **Q.3** The locus of a point P(α , β) moving under the condition that the line $y = \alpha x + \beta$ is a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is- [AIEEE-2005] (A) an ellipse (B) a circle (C) a parabola (D) a hyperbola
- Q.4 The equation of the hyperbola whose foci are (-2, 0) and (2, 0) and eccentricity is 2 is given by - [AIEEE-2011] (A) $x^2 - 3y^2 = 3$ (B) $3x^2 - y^2 = 3$ (C) $-x^2 + 3y^2 = 3$ (D) $-3x^2 + y^2 = 3$

SECTION -B

Q.1 If $\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$ represents family of

hyperbolas, where $\boldsymbol{\alpha}$ varies then-

[IIT Scr.2003/AIEEE-07]

- (A) e remains constant
- (B) abscissas of foci remain constant
- (C) equation of directrices remain constant
- (D) abscissa of vertices remain constant

Q.2 The point at which the line $2x + \sqrt{6}y = 2$ touches the curve $x^2 - 2y^2 = 4$, is-

[IIT Scr. 2004]

(A)
$$(4, -\sqrt{6})$$
 (B) $(\sqrt{6}, 1)$
(C) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$ (D) $\left(\frac{\pi}{6}, \pi\right)$

Q.3 If a hyperbola passes through the focus of the $\frac{x^2}{25} + \frac{y^2}{16} = 1 \text{ and its transverse and conjugate}$ axes coincide with the major and minor axis of ellipse, and product of eccentricities is 1, then [IIT-2006] (A) Focus of hyperbola is (5, 0)

- (B) Focus of hyperbola is $(5\sqrt{3}, 0)$
- (C) The equation of hyperbola is $\frac{x^2}{9} \frac{y^2}{25} = 1$ (D) The equation of hyperbola is $\frac{x^2}{9} - \frac{y^2}{16} = 1$
- Q.4 A hyperbola, having the transverse axis of length $2\sin\theta$, is confocal with the ellipse $3x^2 + 4y^2 = 12$. Then its equation is- **[IIT-2007]** (A) $x^2 \csc^2 \theta - y^2 \sec^2 \theta = 1$ (B) $x^2 \sec^2 \theta - y^2 \csc^2 \theta = 1$ (C) $x^2 \sin^2 \theta - y^2 \cos^2 \theta = 1$ (D) $x^2 \cos^2 \theta - y^2 \sin^2 \theta = 1$
- Q.5 An ellipse intersects the hyperbola $2x^2 2y^2 = 1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

[IIT-2009]

- (A) equation of ellipse is $x^2 + 2y^2 = 2$
- (B) the foci of ellipse are $(\pm 1, 0)$
- (C) equation of ellipse is $x^2 + 2y^2 = 4$
- (D) the foci of ellipse are $(\pm \sqrt{2}, 0)$

Q.6 The line 2x + y = 1 is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is - [IIT-2010] (A) 2 (B) 3 (C) 4 (D) $\sqrt{3}$

Passage : (Q.7 to Q.8)

The circle $x^2 + y^2 - 8x = 0$ and hyperbola	$\frac{x^2}{9}$ -	$\frac{y^2}{4} = 1$
intersect at the points A and B	[IIT-	2010]

- Q.7 Equation of a common tangent with positive slope to the circle as well as to the hyperbola is -(A) $2x - \sqrt{5} y - 20 = 0$ (B) $2x - \sqrt{5} y + 4 = 0$ (C) 3x - 4y + 8 = 0 (D) 4x - 3y + 4 = 0
- Q.8 Equation of the circle with AB as its diameter is (A) $x^2 + y^2 - 12 x + 24 = 0$ (B) $x^2 + y^2 + 12 x + 24 = 0$ (C) $x^2 + y^2 + 24 x - 12 = 0$ (D) $x^2 + y^2 - 24x - 12 = 0$

Q.9 Let the eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be reciprocal to that of the ellipse $x^2 + 4y^2 = 4$. If the hyperbola passes through a focus of the ellipse, then - [IIT-2011] (A) the equation of the hyperbola is

$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$

- (B) a focus of the hyperbola is (2, 0)
- (C) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
- (D) the equation of the hyperbola is $x^2 3y^2 = 3$

ANSWER KEY

LEVEL-1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13
Ans.	В	Α	В	С	Α	В	Α	С	В	С	Α	С	Α
Q.No.	14	15	16	17	18	19	20	21	22	23	24	25	26
Ans.	С	Α	D	С	С	С	Α	D	С	В	С	D	В
Q.No.	27	28	29	30	31	32	33	34					
Ans.	A	В	A	С	С	В	A	B,C					

LEVEL-2

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13
Ans.	В	В	В	В	В	А	В	С	А	С	D	С	С
Q.No.	14	15	16	17	18	19	20	21	22	23	24	25	26
Ans.	С	D	B,C	В	С	С	С	Α	В	A,C	С	А	А
Q.No.	27	28	29										
Ans.	D	В	С										

$$(30) \quad \mathbf{A} \to \mathbf{T} ; \mathbf{B} \to \mathbf{S} ; \mathbf{C} \to \mathbf{Q}$$

(31) $A \rightarrow T$; $B \rightarrow Q$, S; $C \rightarrow P$, R

LEVEL-3

SECTION-A

Qus.	1	2	3	4
Ans.	В	D	D	В

SECTION-B

Qus.	1	2	3	4	5	6	7	8	9
Ans.	В	Α	A,D	Α	A,B	Α	В	Α	B,D